Suppr超能文献

基于无人机获取的热图像的复杂背景下太阳能电池板检测。

Solar Panel Detection within Complex Backgrounds Using Thermal Images Acquired by UAVs.

机构信息

Antonio Nariño University (UAN), Bogotá, Colombia.

Telecommunications and Information Processing (TELIN), Ghent University, Imec, B-9000 Ghent, Belgium.

出版信息

Sensors (Basel). 2020 Oct 31;20(21):6219. doi: 10.3390/s20216219.

Abstract

The installation of solar plants everywhere in the world increases year by year. Automated diagnostic methods are needed to inspect the solar plants and to identify anomalies within these photovoltaic panels. The inspection is usually carried out by unmanned aerial vehicles (UAVs) using thermal imaging sensors. The first step in the whole process is to detect the solar panels in those images. However, standard image processing techniques fail in case of low-contrast images or images with complex backgrounds. Moreover, the shades of power lines or structures similar to solar panels impede the automated detection process. In this research, two self-developed methods are compared for the detection of panels in this context, one based on classical techniques and another one based on deep learning, both with a common post-processing step. The first method is based on edge detection and classification, in contrast to the second method is based on training a region based convolutional neural networks to identify a panel. The first method corrects for the low contrast of the thermal image using several preprocessing techniques. Subsequently, edge detection, segmentation and segment classification are applied. The latter is done using a support vector machine trained with an optimized texture descriptor vector. The second method is based on deep learning trained with images that have been subjected to three different pre-processing operations. The postprocessing use the detected panels to infer the location of panels that were not detected. This step selects contours from detected panels based on the panel area and the angle of rotation. Then new panels are determined by the extrapolation of these contours. The panels in 100 random images taken from eleven UAV flights over three solar plants are labeled and used to evaluate the detection methods. The metrics for the new method based on classical techniques reaches a precision of 0.997, a recall of 0.970 and a F1 score of 0.983. The metrics for the method of deep learning reaches a precision of 0.996, a recall of 0.981 and a F1 score of 0.989. The two panel detection methods are highly effective in the presence of complex backgrounds.

摘要

世界各地的太阳能电站安装量逐年增加。需要自动化的诊断方法来检查这些太阳能电站,并识别这些光伏电池板中的异常情况。检查通常由使用热成像传感器的无人机(UAV)进行。整个过程的第一步是在这些图像中检测太阳能电池板。然而,在对比度低的图像或背景复杂的图像的情况下,标准图像处理技术会失效。此外,输电线或与太阳能电池板相似的结构的阴影会阻碍自动检测过程。在这项研究中,比较了两种自行开发的方法来检测这种情况下的电池板,一种基于经典技术,另一种基于深度学习,两者都有一个共同的后处理步骤。第一种方法基于边缘检测和分类,而第二种方法则基于训练基于区域的卷积神经网络来识别电池板。第一种方法使用几种预处理技术来纠正热图像的对比度低的问题。随后,应用边缘检测、分割和分割分类。后者是使用经过优化的纹理描述符向量训练的支持向量机完成的。第二种方法基于经过三种不同预处理操作的图像进行深度学习。后处理使用检测到的电池板来推断未检测到的电池板的位置。此步骤基于电池板的面积和旋转角度,从检测到的电池板中选择轮廓。然后通过这些轮廓的外推来确定新的电池板。从三个太阳能电站的十一次 UAV 飞行中随机抽取的 100 张图像中标记了这些电池板,并用于评估检测方法。基于经典技术的新方法的指标达到了 0.997 的精度、0.970 的召回率和 0.983 的 F1 分数。基于深度学习的方法的指标达到了 0.996 的精度、0.981 的召回率和 0.989 的 F1 分数。在存在复杂背景的情况下,这两种电池板检测方法非常有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验