Suppr超能文献

使用无监督传感算法和三维增强现实技术检测与分析太阳能光伏组件中的老化区域

Detection and analysis of deteriorated areas in solar PV modules using unsupervised sensing algorithms and 3D augmented reality.

作者信息

Oulefki Adel, Himeur Yassine, Trongtirakul Thaweesak, Amara Kahina, Agaian Sos, Benbelkacem Samir, Guerroudji Mohamed Amine, Zemmouri Mohamed, Ferhat Sahla, Zenati Nadia, Atalla Shadi, Mansoor Wathiq

机构信息

University of Sharjah, Sharjah, United Arab Emirates.

Centre de Développement des Technologies Avancées (CDTA), Algiers, 16018, Algeria.

出版信息

Heliyon. 2024 Mar 16;10(6):e27973. doi: 10.1016/j.heliyon.2024.e27973. eCollection 2024 Mar 30.

Abstract

Solar Photovoltaic (PV) systems are increasingly vital for enhancing energy security worldwide. However, their efficiency and power output can be significantly reduced by hotspots and snail trails, predominantly caused by cracks in PV modules. This article introduces a novel methodology for the automatic segmentation and analysis of such anomalies, utilizing unsupervised sensing algorithms coupled with 3D Augmented Reality (AR) for enhanced visualization. The methodology outperforms existing segmentation techniques, including Weka and the Meta Segment Anything Model (SAM), as demonstrated through computer simulations. These simulations were conducted using the Cali-Thermal Solar Panels and Solar Panel Infrared Image Datasets, with evaluation metrics such as the Jaccard Index, Dice Coefficient, Precision, and Recall, achieving scores of 0.76, 0.82, 0.90, 0.99, and 0.76, respectively. By integrating drone technology, the proposed approach aims to revolutionize PV maintenance by facilitating real-time, automated solar panel detection. This advancement promises substantial cost reductions, heightened energy production, and improved performance of solar PV installations. Furthermore, the innovative integration of unsupervised sensing algorithms with 3D AR visualization opens new avenues for future research and development in the field of solar PV maintenance.

摘要

太阳能光伏(PV)系统对于增强全球能源安全日益重要。然而,光伏组件中的裂缝主要会导致热点和蜗牛纹,从而显著降低其效率和功率输出。本文介绍了一种新颖的方法,用于自动分割和分析此类异常,该方法利用无监督传感算法结合三维增强现实(AR)技术以实现增强可视化。通过计算机模拟证明,该方法优于现有的分割技术,包括Weka和元分割一切模型(SAM)。这些模拟使用了卡利热太阳能板和太阳能板红外图像数据集,并采用了诸如杰卡德指数、骰子系数、精度和召回率等评估指标,分别取得了0.76、0.82、0.90、0.99和0.76的分数。通过整合无人机技术,该方法旨在通过实现实时、自动的太阳能板检测来彻底改变光伏维护方式。这一进展有望大幅降低成本、提高能源产量并改善太阳能光伏装置的性能。此外,无监督传感算法与三维AR可视化的创新整合为太阳能光伏维护领域的未来研发开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b79/10963330/c29f8175cec3/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验