Suppr超能文献

基于区域的卷积神经网络在使用航空图像的光伏电站异常检测中的应用。

Region-Based CNN for Anomaly Detection in PV Power Plants Using Aerial Imagery.

机构信息

IPI-URC-imec, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.

Sitemark, Gaston Geenslaan 11, 3001 Leuven, Belgium.

出版信息

Sensors (Basel). 2022 Feb 7;22(3):1244. doi: 10.3390/s22031244.

Abstract

Today, solar energy is taking an increasing share of the total energy mix. Unfortunately, many operational photovoltaic plants suffer from a plenitude of defects resulting in non-negligible power loss. The latter highly impacts the overall performance of the PV site; therefore, operators need to regularly inspect their solar parks for anomalies in order to prevent severe performance drops. As this operation is naturally labor-intensive and costly, we present in this paper a novel system for improved PV diagnostics using drone-based imagery. Our solution consists of three main steps. The first step locates the solar panels within the image. The second step detects the anomalies within the solar panels. The final step identifies the root cause of the anomaly. In this paper, we mainly focus on the second step comprising the detection of anomalies within solar panels, which is done using a region-based convolutional neural network (CNN). Experiments on six different PV sites with different specifications and a variety of defects demonstrate that our anomaly detector achieves a true positive rate or recall of more than 90% for a false positive rate of around 2% to 3% tested on a dataset containing nearly 9000 solar panels. Compared to the best state-of-the-art methods, the experiments revealed that we achieve a slightly higher true positive rate for a substantially lower false positive rate, while tested on a more realistic dataset.

摘要

如今,太阳能在能源结构中所占的比例越来越大。不幸的是,许多运行中的光伏电站存在大量缺陷,导致不可忽视的功率损失。后者严重影响了光伏电站的整体性能;因此,运营商需要定期检查他们的太阳能公园是否存在异常,以防止性能严重下降。由于这项操作自然需要大量人力和成本,因此我们在本文中提出了一种使用基于无人机的图像进行改进型光伏诊断的新系统。我们的解决方案由三个主要步骤组成。第一步是在图像中定位太阳能电池板。第二步是检测太阳能电池板内的异常。第三步是确定异常的根本原因。在本文中,我们主要关注第二步,即使用基于区域的卷积神经网络(CNN)检测太阳能电池板中的异常。在六个不同规格和多种缺陷的光伏电站上进行的实验表明,我们的异常检测器在包含近 9000 个太阳能电池板的数据集上测试时,其误报率约为 2%至 3%,真阳性率或召回率超过 90%。与最先进的方法相比,实验表明,我们在测试更现实的数据集时,实现了略高的真阳性率和低得多的误报率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/898a/8838495/a93bd443f294/sensors-22-01244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验