A Wasfey Madlin, Abdelwahab Abdalla, Carrasco-Marín Francisco, Pérez-Cadenas Agustín F, H Abdullah H, S Yahia I, Farghali Ahmed Ali
Nanotechnology Lab, Electronics Research Institute, El Nozha, Cairo 11311, Egypt.
Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
Materials (Basel). 2020 Oct 31;13(21):4906. doi: 10.3390/ma13214906.
Introducing new inexpensive materials for supercapacitors application with high energy density and stability, is the current research challenge. In this work, Silver doped carbon xerogels have been synthesized via a simple sol-gel method. The silver doped carbon xerogels are further surface functionalized with different loadings of nickel cobaltite (1 wt.%, 5 wt.%, and 10 wt.%) using a facile impregnation process. The morphology and textural properties of the obtained composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption analysis. The silver doped carbon xerogels display a higher surface area and larger mesopore volume compared to the un-doped carbon xerogels and hierarchically porous structure is obtained for all materials. The hybrid composites have been utilized as electrode materials for symmetric supercapacitors in 6 M KOH electrolyte. Among all the hybrid composites, silver doped carbon xerogel functionalized with 1 wt.% nickel cobaltite (NiCo1/Ag-CX) shows the best supercapacitor performance: high specific capacitance (368 F g at 0.1 A g), low equivalent series resistance (1.9 Ω), high rate capability (99% capacitance retention after 2000 cycles at 1 A g), and high energy and power densities (50 Wh/Kg, 200 W/Kg at 0.1 A g). It is found that the specific capacitance does not only depend on surface area, but also on others factors such as particle size, uniform particle distribution, micro-mesoporous structure, which contribute to abundant active sites and fast charge, and ion transfer rates between the electrolyte and the active sites.
引入具有高能量密度和稳定性的新型廉价超级电容器应用材料是当前的研究挑战。在这项工作中,通过简单的溶胶 - 凝胶法合成了银掺杂碳干凝胶。使用简便的浸渍工艺,用不同负载量的钴酸镍(1 wt.%、5 wt.%和10 wt.%)对银掺杂碳干凝胶进行进一步的表面功能化。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮物理吸附分析对所得复合材料的形态和结构性质进行了表征。与未掺杂的碳干凝胶相比,银掺杂碳干凝胶具有更高的表面积和更大的中孔体积,并且所有材料均获得了分级多孔结构。这些混合复合材料已被用作6 M KOH电解液中对称超级电容器的电极材料。在所有混合复合材料中,用1 wt.%钴酸镍功能化的银掺杂碳干凝胶(NiCo1/Ag-CX)表现出最佳的超级电容器性能:高比电容(在0.1 A g时为368 F g)、低等效串联电阻(1.9 Ω)、高倍率性能(在1 A g下循环2000次后电容保持率为99%)以及高能量和功率密度(在0.1 A g时为50 Wh/Kg,200 W/Kg)。研究发现,比电容不仅取决于表面积,还取决于其他因素,如粒径、颗粒分布均匀性、微 - 中孔结构,这些因素有助于提供丰富的活性位点以及快速的电荷和离子在电解液与活性位点之间的转移速率。