School of Computing, Newcastle University, Urban Sciences Building, Science Square, Newcastle upon Tyne NE4 5TG, UK.
Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politénica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
J R Soc Interface. 2020 Nov;17(172):20200561. doi: 10.1098/rsif.2020.0561. Epub 2020 Nov 4.
Nonlinearity plays a fundamental role in the performance of both natural and synthetic biological networks. Key functional motifs in living microbial systems, such as the emergence of bistability or oscillations, rely on nonlinear molecular dynamics. Despite its core importance, the rational design of nonlinearity remains an unmet challenge. This is largely due to a lack of mathematical modelling that accounts for the mechanistic basis of nonlinearity. We introduce a model for gene regulatory circuits that explicitly simulates protein dimerization-a well-known source of nonlinear dynamics. Specifically, our approach focuses on modelling co-translational dimerization: the formation of protein dimers during-and not after-translation. This is in contrast to the prevailing assumption that dimer generation is only viable between freely diffusing monomers (i.e. post-translational dimerization). We provide a method for fine-tuning nonlinearity on demand by balancing the impact of co- versus post-translational dimerization. Furthermore, we suggest design rules, such as protein length or physical separation between genes, that may be used to adjust dimerization dynamics . The design, build and test of genetic circuits with on-demand nonlinear dynamics will greatly improve the programmability of synthetic biological systems.
非线性在自然和合成生物网络的性能中起着至关重要的作用。生命微生物系统中的关键功能基序,如双稳性或振荡的出现,依赖于非线性分子动力学。尽管其核心重要性,但合理设计非线性仍然是一个未满足的挑战。这主要是由于缺乏数学建模,无法解释非线性的机制基础。我们引入了一个基因调控回路模型,该模型明确模拟了蛋白质二聚化——一种众所周知的非线性动力学来源。具体来说,我们的方法侧重于建模共翻译二聚化:即在翻译过程中形成蛋白质二聚体,而不是在翻译后形成。这与普遍的假设形成对比,即二聚体的产生仅在自由扩散的单体之间可行(即翻译后二聚化)。我们提供了一种按需微调非线性的方法,通过平衡共翻译与翻译后二聚化的影响来实现。此外,我们提出了一些设计规则,例如蛋白质长度或基因之间的物理分离,可用于调整二聚化动力学。具有按需非线性动力学的遗传电路的设计、构建和测试将极大地提高合成生物系统的可编程性。