Suppr超能文献

为合成生物学中的可编程非线性建模共翻译二聚化。

Modelling co-translational dimerization for programmable nonlinearity in synthetic biology.

机构信息

School of Computing, Newcastle University, Urban Sciences Building, Science Square, Newcastle upon Tyne NE4 5TG, UK.

Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politénica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.

出版信息

J R Soc Interface. 2020 Nov;17(172):20200561. doi: 10.1098/rsif.2020.0561. Epub 2020 Nov 4.

Abstract

Nonlinearity plays a fundamental role in the performance of both natural and synthetic biological networks. Key functional motifs in living microbial systems, such as the emergence of bistability or oscillations, rely on nonlinear molecular dynamics. Despite its core importance, the rational design of nonlinearity remains an unmet challenge. This is largely due to a lack of mathematical modelling that accounts for the mechanistic basis of nonlinearity. We introduce a model for gene regulatory circuits that explicitly simulates protein dimerization-a well-known source of nonlinear dynamics. Specifically, our approach focuses on modelling co-translational dimerization: the formation of protein dimers during-and not after-translation. This is in contrast to the prevailing assumption that dimer generation is only viable between freely diffusing monomers (i.e. post-translational dimerization). We provide a method for fine-tuning nonlinearity on demand by balancing the impact of co- versus post-translational dimerization. Furthermore, we suggest design rules, such as protein length or physical separation between genes, that may be used to adjust dimerization dynamics . The design, build and test of genetic circuits with on-demand nonlinear dynamics will greatly improve the programmability of synthetic biological systems.

摘要

非线性在自然和合成生物网络的性能中起着至关重要的作用。生命微生物系统中的关键功能基序,如双稳性或振荡的出现,依赖于非线性分子动力学。尽管其核心重要性,但合理设计非线性仍然是一个未满足的挑战。这主要是由于缺乏数学建模,无法解释非线性的机制基础。我们引入了一个基因调控回路模型,该模型明确模拟了蛋白质二聚化——一种众所周知的非线性动力学来源。具体来说,我们的方法侧重于建模共翻译二聚化:即在翻译过程中形成蛋白质二聚体,而不是在翻译后形成。这与普遍的假设形成对比,即二聚体的产生仅在自由扩散的单体之间可行(即翻译后二聚化)。我们提供了一种按需微调非线性的方法,通过平衡共翻译与翻译后二聚化的影响来实现。此外,我们提出了一些设计规则,例如蛋白质长度或基因之间的物理分离,可用于调整二聚化动力学。具有按需非线性动力学的遗传电路的设计、构建和测试将极大地提高合成生物系统的可编程性。

相似文献

3
A Model for the Spatiotemporal Design of Gene Regulatory Circuits †.基因调控回路的时空设计模型†
ACS Synth Biol. 2019 Sep 20;8(9):2007-2016. doi: 10.1021/acssynbio.9b00022. Epub 2019 Aug 30.
6
Mathematical Modelling in Plant Synthetic Biology.植物合成生物学中的数学建模。
Methods Mol Biol. 2022;2379:209-251. doi: 10.1007/978-1-0716-1791-5_13.
7
Comparing different ODE modelling approaches for gene regulatory networks.比较基因调控网络的不同 ODE 建模方法。
J Theor Biol. 2009 Dec 21;261(4):511-30. doi: 10.1016/j.jtbi.2009.07.040. Epub 2009 Aug 6.
8
Effects of downstream genes on synthetic genetic circuits.下游基因对合成基因回路的影响。
BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S4. doi: 10.1186/1752-0509-8-S4-S4. Epub 2014 Dec 8.
10
Synthetic nonlinear computation for genetic circuit design.遗传电路设计中的合成非线性计算。
Curr Opin Biotechnol. 2022 Aug;76:102727. doi: 10.1016/j.copbio.2022.102727. Epub 2022 May 4.

本文引用的文献

2
Pathways to cellular supremacy in biocomputing.生物计算中通往细胞至上的途径。
Nat Commun. 2019 Nov 20;10(1):5250. doi: 10.1038/s41467-019-13232-z.
3
A Model for the Spatiotemporal Design of Gene Regulatory Circuits †.基因调控回路的时空设计模型†
ACS Synth Biol. 2019 Sep 20;8(9):2007-2016. doi: 10.1021/acssynbio.9b00022. Epub 2019 Aug 30.
5
iBioSim 3: A Tool for Model-Based Genetic Circuit Design.iBioSim 3:一种基于模型的基因电路设计工具。
ACS Synth Biol. 2019 Jul 19;8(7):1560-1563. doi: 10.1021/acssynbio.8b00078. Epub 2018 Jul 11.
9
Complex systems biology.复杂系统生物学。
J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0391.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验