Suppr超能文献

生物网络调控的非线性。

The nonlinearity of regulation in biological networks.

机构信息

Department of Biology, Tufts University, Medford, MA, 02155, USA.

Department of Mathematics, University of Kentucky, Lexington, KY, 40506, USA.

出版信息

NPJ Syst Biol Appl. 2023 Apr 4;9(1):10. doi: 10.1038/s41540-023-00273-w.

Abstract

The extent to which the components of a biological system are (non)linearly regulated determines how amenable they are to therapy and control. To better understand this property termed "regulatory nonlinearity", we analyzed a suite of 137 published Boolean network models, containing a variety of complex nonlinear regulatory interactions, using a probabilistic generalization of Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation, we used Taylor decomposition to approximate the models with various levels of regulatory nonlinearity. A comparison of the resulting series of approximations of the biological models with appropriate random ensembles revealed that biological regulation tends to be less nonlinear than expected, meaning that higher-order interactions among the regulatory inputs tend to be less pronounced. A further categorical analysis of the biological models revealed that the regulatory nonlinearity of cancer and disease networks could not only be sometimes higher than expected but also be relatively more variable. We show that this variation is caused by differences in the apportioning of information among the various orders of regulatory nonlinearity. Our results suggest that there may have been a weak but discernible selection pressure for biological systems to evolve linear regulation on average, but for certain systems such as cancer, on the other hand, to simultaneously evolve more nonlinear rules.

摘要

生物系统各组成部分的(非)线性调节程度决定了它们对治疗和控制的适应程度。为了更好地理解这一被称为“调节非线性”的特性,我们使用乔治·布尔(George Boole)本人提出的概率布尔逻辑的推广,分析了一整套 137 个已发表的布尔网络模型,其中包含各种复杂的非线性调节相互作用。利用这种表述的连续性,我们使用泰勒分解(Taylor decomposition)用各种调节非线性程度来近似模型。将生物模型的这些连续近似系列与适当的随机集合进行比较表明,生物调节往往比预期的非线性程度低,这意味着调节输入之间的高阶相互作用往往不那么明显。对生物模型的进一步分类分析表明,癌症和疾病网络的调节非线性不仅有时可能高于预期,而且相对更加多变。我们表明,这种变化是由调节非线性各阶之间信息分配的差异引起的。我们的结果表明,生物系统可能平均存在微弱但可辨别的选择压力,使其进化为线性调节,但另一方面,对于癌症等某些系统,同时进化出更多的非线性规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1552/10073134/051a74502cd7/41540_2023_273_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验