Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.
J Biol Chem. 2021 Jan-Jun;296:100020. doi: 10.1074/jbc.RA120.015272. Epub 2020 Nov 22.
Heterodimeric KIF3AC is a mammalian kinesin-2 that is highly expressed in the central nervous system and associated with vesicles in neurons. KIF3AC is an intriguing member of the kinesin-2 family because the intrinsic kinetics of KIF3A and KIF3C when expressed as homodimers and analyzed in vitro are distinctively different from each other. For example, the single-molecule velocities of the engineered homodimers KIF3AA and KIF3CC are 293 and 7.5 nm/s, respectively, whereas KIF3AC has a velocity of 186 nm/s. These results led us to hypothesize that heterodimerization alters the intrinsic catalytic properties of the two heads, and an earlier computational analysis predicted that processive steps would alternate between a fast step for KIF3A followed by a slow step for KIF3C resulting in asymmetric stepping. To test this hypothesis directly, we measured the presteady-state kinetics of phosphate release for KIF3AC, KIF3AA, and KIF3CC followed by computational modeling of the KIF3AC phosphate release transients. The results reveal that KIF3A and KIF3C retain their intrinsic ATP-binding and hydrolysis kinetics. Yet within KIF3AC, KIF3A activates the rate of phosphate release for KIF3C such that the coupled steps of phosphate release and dissociation from the microtubule become more similar for KIF3A and KIF3C. These coupled steps are the rate-limiting transition for the ATPase cycle suggesting that within KIF3AC, the stepping kinetics are similar for each head during the processive run. Future work will be directed to define how these properties enable KIF3AC to achieve its physiological functions.
异二聚体 KIF3AC 是一种在中枢神经系统中高度表达的哺乳动物驱动蛋白-2,与神经元中的囊泡有关。KIF3AC 是驱动蛋白-2 家族中一个有趣的成员,因为当以同源二聚体的形式表达并在体外进行分析时,KIF3A 和 KIF3C 的固有动力学明显不同。例如,工程同源二聚体 KIF3AA 和 KIF3CC 的单分子速度分别为 293nm/s 和 7.5nm/s,而 KIF3AC 的速度为 186nm/s。这些结果使我们假设异二聚化改变了两个头部的固有催化特性,并且早期的计算分析预测,在连续步骤中,KIF3A 的快速步骤之后是 KIF3C 的缓慢步骤,导致不对称步移。为了直接检验这一假设,我们测量了 KIF3AC、KIF3AA 和 KIF3CC 的磷酸盐释放的预稳态动力学,然后对 KIF3AC 磷酸盐释放瞬变进行了计算建模。结果表明,KIF3A 和 KIF3C 保留了它们的内在 ATP 结合和水解动力学。然而,在 KIF3AC 中,KIF3A 激活了 KIF3C 的磷酸盐释放速率,使得磷酸盐释放和与微管解离的偶联步骤对于 KIF3A 和 KIF3C 变得更加相似。这些偶联步骤是 ATP 酶循环的限速转换,这表明在 KIF3AC 中,在连续运行过程中,每个头部的步移动力学相似。未来的工作将致力于定义这些特性如何使 KIF3AC 实现其生理功能。