Guzik-Lendrum Stephanie, Rayment Ivan, Gilbert Susan P
Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin.
Biophys J. 2017 Oct 17;113(8):1845-1857. doi: 10.1016/j.bpj.2017.09.015.
KIF3C is one subunit of the functional microtubule-based kinesin-2 KIF3AC motor, an anterograde cargo transporter in neurons. However, KIF3C has also been implicated as an injury-specific kinesin that is a key regulator of axonal growth and regeneration by promoting microtubule dynamics for reorganization at the neuronal growth cone. To test its potential role as a modulator of microtubule dynamics in vitro, an engineered homodimeric KIF3CC was incorporated into a dynamic microtubule assay and examined by total internal reflection fluorescence microscopy. The results reveal that KIF3CC is targeted to the microtubule plus-end, acts as a potent catastrophe factor through an increase in microtubule catastrophe frequency, and does so by elimination of the dependence of the catastrophe rate on microtubule lifetime. Moreover, KIF3CC accelerates the catastrophe rate without altering the microtubule growth rate. Therefore, the ATP-promoted KIF3CC mechanism of catastrophe is different from the well-described catastrophe factors kinesin-13 MCAK and kinesin-8 Kip3/KIF18A. The properties of KIF3CC were not shared by heterodimeric KIF3AC and required the unique KIF3C-specific sequence extension in loop L11 at the microtubule interface. At the microtubule plus-end, the presence of KIF3CC resulted in modulation of the tapered structure typically seen in growing dynamic microtubules to microtubule blunt plus-ends. Overall our results implicate homodimeric KIF3CC as a unique promoter of microtubule catastrophe and substantiate its physiological role in cytoskeletal remodeling.
KIF3C是功能性微管驱动蛋白-2 KIF3AC马达的一个亚基,该马达是神经元中的一种顺行性货物转运蛋白。然而,KIF3C也被认为是一种损伤特异性驱动蛋白,它通过促进微管动力学在神经元生长锥处进行重组,从而成为轴突生长和再生的关键调节因子。为了在体外测试其作为微管动力学调节剂的潜在作用,将一种工程化的同型二聚体KIF3CC纳入动态微管分析,并通过全内反射荧光显微镜进行检测。结果表明,KIF3CC定位于微管正端,通过增加微管的灾难频率作为一种有效的灾难因子发挥作用,并且通过消除灾难率对微管寿命的依赖性来实现这一点。此外,KIF3CC在不改变微管生长速率的情况下加速了灾难率。因此,ATP促进的KIF3CC灾难机制不同于已充分描述的灾难因子驱动蛋白-13 MCAK和驱动蛋白-8 Kip3/KIF18A。异二聚体KIF3AC不具有KIF3CC的特性,并且需要在微管界面的环L11中具有独特的KIF3C特异性序列延伸。在微管正端,KIF3CC的存在导致通常在生长的动态微管中看到的锥形结构转变为微管钝端。总体而言,我们的结果表明同型二聚体KIF3CC是微管灾难的独特促进因子,并证实了其在细胞骨架重塑中的生理作用。