Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
Nat Commun. 2020 Nov 3;11(1):5550. doi: 10.1038/s41467-020-19275-x.
The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function.
成像技术、荧光传感器和光遗传学工具在细胞生物学中的应用能力正在不断提高。与此同时,细胞重编程和类器官工程也在扩大体外人类神经元模型的应用。这就对更适合活细胞成像的组织培养条件提出了更高的要求。在这里,我们发现传统培养基在用于神经元培养的活细胞成像和功能测定时存在多个问题(即荧光信号不佳、光毒性和非生理神经元活动)。为了克服这些问题,我们开发了一种名为 BrainPhys™ Imaging(BPI)的神经培养基,其中优化了荧光和光毒性化合物的浓度。BPI 基于原始 BrainPhys 培养基的配方。我们对现有的神经元培养基进行了基准测试,并表明 BPI 可增强荧光信号、降低光毒性并优化支持培养神经元的电和突触活性。我们还展示了 BPI 用于人类神经元光遗传学和钙成像的优越能力。总之,我们的研究表明,BPI 可提高体外活神经元进行各种荧光成像应用的质量,同时支持神经元的最佳活力和功能。