Suppr超能文献

系统性感染期间非囊化肺炎链球菌的转化。

Transformation of nonencapsulated Streptococcus pneumoniae during systemic infection.

机构信息

Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA.

Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.

出版信息

Sci Rep. 2020 Nov 3;10(1):18932. doi: 10.1038/s41598-020-75988-5.

Abstract

Streptococcus pneumoniae (pneumococcus) is a principal cause of bacterial middle ear infections, pneumonia, and meningitis. Capsule-targeted pneumococcal vaccines have likely contributed to increased carriage of nonencapsulated S. pneumoniae (NESp). Some NESp lineages are associated with highly efficient DNA uptake and transformation frequencies. However, NESp strains lack capsule that may increase disease severity. We tested the hypothesis that NESp could acquire capsule during systemic infection and transform into more virulent pneumococci. We reveal that NESp strains MNZ67 and MNZ41 are highly transformable and resistant to multiple antibiotics. Natural transformation of NESp when co-administered with heat-killed encapsulated strain WU2 in a murine model of systemic infection resulted in encapsulation of NESp and increased virulence during bacteremia. Functional capsule production increased the pathogenic potential of MNZ67 by significantly decreasing complement deposition on the bacterial surface. However, capsule acquisition did not further decrease complement deposition on the relatively highly pathogenic strain MNZ41. Whole genome sequencing of select transformants demonstrated that recombination of up to 56.7 kbp length occurred at the capsule locus, along with additional recombination occurring at distal sites harboring virulence-associated genes. These findings indicate NESp can compensate for lack of capsule production and rapidly evolve into more virulent strains.

摘要

肺炎链球菌(肺炎球菌)是细菌性中耳炎、肺炎和脑膜炎的主要病因。针对荚膜的肺炎球菌疫苗可能导致无荚膜肺炎链球菌(NESp)的携带增加。一些 NESp 谱系与高效的 DNA 摄取和转化频率有关。然而,NESp 菌株缺乏荚膜,这可能会增加疾病的严重程度。我们检验了这样一个假设,即 NESp 可以在全身感染期间获得荚膜并转化为更具毒性的肺炎球菌。我们揭示了 MNZ67 和 MNZ41 这两种 NESp 菌株具有很高的可转化性和对多种抗生素的耐药性。在全身感染的小鼠模型中,当与热杀死的囊封菌株 WU2 共同给药时,NESp 的自然转化导致 NESp 囊封,并在菌血症期间增加了毒力。功能性荚膜的产生通过显著减少细菌表面补体的沉积,显著增加了 MNZ67 的致病潜力。然而,荚膜的获得并没有进一步减少相对高致病性菌株 MNZ41 表面补体的沉积。对选定转化体的全基因组测序表明,在荚膜基因座处发生了长达 56.7 kbp 的重组,同时在携带毒力相关基因的远端部位也发生了额外的重组。这些发现表明,NESp 可以弥补荚膜产生的不足,并迅速进化为更具毒性的菌株。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e84/7641166/9602e6791dd6/41598_2020_75988_Fig1_HTML.jpg

相似文献

1
Transformation of nonencapsulated Streptococcus pneumoniae during systemic infection.
Sci Rep. 2020 Nov 3;10(1):18932. doi: 10.1038/s41598-020-75988-5.
4
Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis.
mBio. 2016 Mar 22;7(2):e01792. doi: 10.1128/mBio.01792-15.
6
Polyamine transporter potABCD is required for virulence of encapsulated but not nonencapsulated Streptococcus pneumoniae.
PLoS One. 2017 Jun 6;12(6):e0179159. doi: 10.1371/journal.pone.0179159. eCollection 2017.
7
pspK acquisition contributes to the loss of capsule in pneumococci: molecular characterisation of non-encapsulated pneumococci.
Microbes Infect. 2020 Oct;22(9):451-456. doi: 10.1016/j.micinf.2020.05.014. Epub 2020 May 26.
8

引用本文的文献

5
Pneumococcal Phasevarions Control Multiple Virulence Traits, Including Vaccine Candidate Expression.
Microbiol Spectr. 2022 Jun 29;10(3):e0091622. doi: 10.1128/spectrum.00916-22. Epub 2022 May 10.
8
Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease.
Front Cell Infect Microbiol. 2021 Nov 1;11:763152. doi: 10.3389/fcimb.2021.763152. eCollection 2021.
9
Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium.
J Bacteriol. 2021 Nov 19;203(24):e0043921. doi: 10.1128/JB.00439-21. Epub 2021 Oct 4.

本文引用的文献

1
Pulmonary Disease Associated With Nonencapsulated .
Open Forum Infect Dis. 2018 Jun 8;5(7):ofy135. doi: 10.1093/ofid/ofy135. eCollection 2018 Jul.
3
Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae.
PLoS Genet. 2018 Jun 13;14(6):e1007410. doi: 10.1371/journal.pgen.1007410. eCollection 2018 Jun.
5
Evaluating alignment and variant-calling software for mutation identification in C. elegans by whole-genome sequencing.
PLoS One. 2017 Mar 23;12(3):e0174446. doi: 10.1371/journal.pone.0174446. eCollection 2017.
6
Anatomical site-specific contributions of pneumococcal virulence determinants.
Pneumonia (Nathan). 2016;8. doi: 10.1186/s41479-016-0007-9. Epub 2016 Jun 3.
7
Addiction of Hypertransformable Pneumococcal Isolates to Natural Transformation for In Vivo Fitness and Virulence.
Infect Immun. 2016 May 24;84(6):1887-1901. doi: 10.1128/IAI.00097-16. Print 2016 Jun.
8
Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis.
mBio. 2016 Mar 22;7(2):e01792. doi: 10.1128/mBio.01792-15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验