Suppr超能文献

个体认知表现的差异可以通过整个大脑皮层的全局而不是局部的 BOLD 活动模式更好地预测。

Individual Differences in Cognitive Performance Are Better Predicted by Global Rather Than Localized BOLD Activity Patterns Across the Cortex.

机构信息

Department of Cognitive Science, University of California, La Jolla, CA 92093, USA.

Center for Human Development, University of California, La Jolla, CA 92161, USA.

出版信息

Cereb Cortex. 2021 Feb 5;31(3):1478-1488. doi: 10.1093/cercor/bhaa290.

Abstract

Despite its central role in revealing the neurobiological mechanisms of behavior, neuroimaging research faces the challenge of producing reliable biomarkers for cognitive processes and clinical outcomes. Statistically significant brain regions, identified by mass univariate statistical models commonly used in neuroimaging studies, explain minimal phenotypic variation, limiting the translational utility of neuroimaging phenotypes. This is potentially due to the observation that behavioral traits are influenced by variations in neuroimaging phenotypes that are globally distributed across the cortex and are therefore not captured by thresholded, statistical parametric maps commonly reported in neuroimaging studies. Here, we developed a novel multivariate prediction method, the Bayesian polyvertex score, that turns a unthresholded statistical parametric map into a summary score that aggregates the many but small effects across the cortex for behavioral prediction. By explicitly assuming a globally distributed effect size pattern and operating on the mass univariate summary statistics, it was able to achieve higher out-of-sample variance explained than mass univariate and popular multivariate methods while still preserving the interpretability of a generative model. Our findings suggest that similar to the polygenicity observed in the field of genetics, the neural basis of complex behaviors may rest in the global patterning of effect size variation of neuroimaging phenotypes, rather than in localized, candidate brain regions and networks.

摘要

尽管神经影像学研究在揭示行为的神经生物学机制方面发挥着核心作用,但它仍面临着为认知过程和临床结果产生可靠生物标志物的挑战。通过在神经影像学研究中常用的大规模单变量统计模型确定的具有统计学意义的脑区,仅能解释极小部分的表型变异,从而限制了神经影像学表型的转化应用。这可能是由于观察到行为特征受到神经影像学表型的变异影响,而这些变异在整个大脑皮层中广泛分布,因此无法通过神经影像学研究中通常报告的阈值化、统计参数图来捕捉。在这里,我们开发了一种新的多变量预测方法,即贝叶斯多顶点评分,它将未经阈值处理的统计参数图转换为汇总评分,从而将皮层中许多但较小的效应聚合起来,用于行为预测。通过明确假设全局分布的效应大小模式并在大规模单变量汇总统计数据上进行操作,它能够实现比大规模单变量和流行的多变量方法更高的样本外方差解释,同时仍然保留生成模型的可解释性。我们的研究结果表明,类似于遗传学领域观察到的多基因性,复杂行为的神经基础可能取决于神经影像学表型效应大小变异的全局模式,而不是位于局部的候选脑区和网络。

相似文献

2
A Bayesian framework for simultaneously modeling neural and behavioral data.
Neuroimage. 2013 May 15;72:193-206. doi: 10.1016/j.neuroimage.2013.01.048. Epub 2013 Jan 28.
3
Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
Neuroimage. 2014 Aug 1;96:117-32. doi: 10.1016/j.neuroimage.2014.03.074. Epub 2014 Apr 4.
6
Functional Specialization and Flexibility in Human Association Cortex.
Cereb Cortex. 2015 Oct;25(10):3654-72. doi: 10.1093/cercor/bhu217. Epub 2014 Sep 23.
7
Atlases of cognition with large-scale human brain mapping.
PLoS Comput Biol. 2018 Nov 29;14(11):e1006565. doi: 10.1371/journal.pcbi.1006565. eCollection 2018 Nov.
8
Task-induced brain state manipulation improves prediction of individual traits.
Nat Commun. 2018 Jul 18;9(1):2807. doi: 10.1038/s41467-018-04920-3.
9
Neurocognitive biases and the patterns of spontaneous correlations in the human cortex.
Trends Cogn Sci. 2013 Dec;17(12):606-15. doi: 10.1016/j.tics.2013.09.014. Epub 2013 Oct 29.
10
New methods for three dimensional mapping of brain waves.
Brain Topogr. 1998 Winter;11(2):103-10. doi: 10.1023/a:1022250404601.

引用本文的文献

1
Psychiatric neuroimaging at a crossroads: Insights from psychiatric genetics.
Dev Cogn Neurosci. 2024 Dec;70:101443. doi: 10.1016/j.dcn.2024.101443. Epub 2024 Sep 23.
2
Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers.
Nat Rev Neurosci. 2024 Dec;25(12):759-775. doi: 10.1038/s41583-024-00869-z. Epub 2024 Oct 24.
4
Sex differences in distributed error-related neural activation in problem-drinking young adults.
Drug Alcohol Depend. 2024 Oct 1;263:112421. doi: 10.1016/j.drugalcdep.2024.112421. Epub 2024 Aug 22.
5
Leveraging Distributed Brain Signal at Rest to Predict Internalizing Symptoms in Youth: Deriving a Polyneuro Risk Score From the ABCD Study Cohort.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Jan;10(1):58-67. doi: 10.1016/j.bpsc.2024.07.026. Epub 2024 Aug 8.
6
Estimating the total variance explained by whole-brain imaging for zero-inflated outcomes.
Commun Biol. 2024 Jul 9;7(1):836. doi: 10.1038/s42003-024-06504-y.
7
Quality over quantity: powering neuroimaging samples in psychiatry.
Neuropsychopharmacology. 2024 Nov;50(1):58-66. doi: 10.1038/s41386-024-01893-4. Epub 2024 Jun 20.
10
Multimodal Neuroimaging Summary Scores as Neurobiological Markers of Psychosis.
Schizophr Bull. 2024 Jul 27;50(4):792-803. doi: 10.1093/schbul/sbad149.

本文引用的文献

1
A SIMPLE, CONSISTENT ESTIMATOR OF SNP HERITABILITY FROM GENOME-WIDE ASSOCIATION STUDIES.
Ann Appl Stat. 2019 Dec;13(4):2509-2538. doi: 10.1214/19-aoas1291. Epub 2019 Nov 28.
2
Decomposing complex links between the childhood environment and brain structure in school-aged youth.
Dev Cogn Neurosci. 2021 Apr;48:100919. doi: 10.1016/j.dcn.2021.100919. Epub 2021 Jan 22.
3
Behavioral and Neural Signatures of Working Memory in Childhood.
J Neurosci. 2020 Jun 24;40(26):5090-5104. doi: 10.1523/JNEUROSCI.2841-19.2020. Epub 2020 May 25.
4
Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises.
Biol Psychiatry. 2020 Dec 1;88(11):818-828. doi: 10.1016/j.biopsych.2020.02.016. Epub 2020 Feb 27.
5
Individual Variation in Functional Topography of Association Networks in Youth.
Neuron. 2020 Apr 22;106(2):340-353.e8. doi: 10.1016/j.neuron.2020.01.029. Epub 2020 Feb 19.
6
Improved prediction of brain age using multimodal neuroimaging data.
Hum Brain Mapp. 2020 Apr 15;41(6):1626-1643. doi: 10.1002/hbm.24899. Epub 2019 Dec 14.
7
Prediction of neurocognition in youth from resting state fMRI.
Mol Psychiatry. 2020 Dec;25(12):3413-3421. doi: 10.1038/s41380-019-0481-6. Epub 2019 Aug 19.
8
Image processing and analysis methods for the Adolescent Brain Cognitive Development Study.
Neuroimage. 2019 Nov 15;202:116091. doi: 10.1016/j.neuroimage.2019.116091. Epub 2019 Aug 12.
9
Generalizability and reproducibility of functional connectivity in autism.
Mol Autism. 2019 Jun 24;10:27. doi: 10.1186/s13229-019-0273-5. eCollection 2019.
10
Quantifying performance of machine learning methods for neuroimaging data.
Neuroimage. 2019 Oct 1;199:351-365. doi: 10.1016/j.neuroimage.2019.05.082. Epub 2019 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验