Suppr超能文献

基于神经影像学的精神障碍和健康认知与行为的个体化预测:方法与前景。

Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises.

机构信息

Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia.

Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Biol Psychiatry. 2020 Dec 1;88(11):818-828. doi: 10.1016/j.biopsych.2020.02.016. Epub 2020 Feb 27.

Abstract

The neuroimaging community has witnessed a paradigm shift in biomarker discovery from using traditional univariate brain mapping approaches to multivariate predictive models, allowing the field to move toward a translational neuroscience era. Regression-based multivariate models (hereafter "predictive modeling") provide a powerful and widely used approach to predict human behavior with neuroimaging features. These studies maintain a focus on decoding individual differences in a continuously behavioral phenotype from neuroimaging data, opening up an exciting opportunity to describe the human brain at the single-subject level. In this survey, we provide an overview of recent studies that utilize machine learning approaches to identify neuroimaging predictors over the past decade. We first review regression-based approaches and highlight connectome-based predictive modeling, which has grown in popularity in recent years. Next, we systematically describe recent representative studies using these tools in the context of cognitive function, symptom severity, personality traits, and emotion processing. Finally, we highlight a few challenges related to combining multimodal data, longitudinal prediction, external validations, and the employment of deep learning methods that have emerged from our review of the existing literature, as well as present some promising and challenging future directions.

摘要

神经影像学领域已经见证了从使用传统的单变量脑映射方法到多变量预测模型的生物标志物发现范式的转变,这使得该领域能够迈向转化神经科学时代。基于回归的多变量模型(以下简称“预测建模”)为使用神经影像学特征预测人类行为提供了一种强大且广泛使用的方法。这些研究仍然专注于从神经影像学数据中解码连续行为表型的个体差异,为在单个主体水平上描述人类大脑开辟了令人兴奋的机会。在本综述中,我们概述了过去十年中利用机器学习方法来识别神经影像学预测因子的最新研究。我们首先回顾了基于回归的方法,并强调了近年来越来越受欢迎的基于连接组的预测建模。接下来,我们系统地描述了使用这些工具在认知功能、症状严重程度、人格特征和情绪处理方面的一些有代表性的最新研究。最后,我们强调了从现有文献综述中出现的一些与结合多模态数据、纵向预测、外部验证以及深度学习方法使用相关的挑战,并提出了一些有前途和具有挑战性的未来方向。

相似文献

3
Towards a brain-based predictome of mental illness.迈向基于大脑的精神疾病预测组学。
Hum Brain Mapp. 2020 Aug 15;41(12):3468-3535. doi: 10.1002/hbm.25013. Epub 2020 May 6.
6
Translational machine learning for psychiatric neuroimaging.精神神经影像学的转化机器学习。
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:113-121. doi: 10.1016/j.pnpbp.2018.09.014. Epub 2018 Oct 2.
8
Modeling Individual Differences in Brain Development.脑发育的个体差异建模。
Biol Psychiatry. 2020 Jul 1;88(1):63-69. doi: 10.1016/j.biopsych.2020.01.027. Epub 2020 Feb 11.

引用本文的文献

4
Rescuing missing data in connectome-based predictive modeling.在基于连接组的预测建模中挽救缺失数据。
Imaging Neurosci (Camb). 2024 Feb 2;2. doi: 10.1162/imag_a_00071. eCollection 2024.
5
Edge-centric network control on the human brain structural network.人类脑结构网络上以边缘为中心的网络控制
Imaging Neurosci (Camb). 2024 Jun 10;2. doi: 10.1162/imag_a_00191. eCollection 2024.

本文引用的文献

3
Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample.迈向稳健的焦虑生物标志物:大规模样本中的机器学习方法。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):799-807. doi: 10.1016/j.bpsc.2019.05.018. Epub 2019 Jun 21.
4
Prediction of neurocognition in youth from resting state fMRI.基于静息态功能磁共振成像预测青少年的神经认知情况
Mol Psychiatry. 2020 Dec;25(12):3413-3421. doi: 10.1038/s41380-019-0481-6. Epub 2019 Aug 19.
6
Brain hemispheric involvement in visuospatial and verbal divergent thinking.大脑半球在视空间和言语发散思维中的参与。
Neuroimage. 2019 Nov 15;202:116065. doi: 10.1016/j.neuroimage.2019.116065. Epub 2019 Aug 7.
9
Predicting human inhibitory control from brain structural MRI.基于脑结构 MRI 预测人类抑制控制能力
Brain Imaging Behav. 2020 Dec;14(6):2148-2158. doi: 10.1007/s11682-019-00166-9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验