Department of Biology, Montclair State University, 1 Normal Ave., Montclair, NJ, 07043, USA.
Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
Heredity (Edinb). 2021 Mar;126(3):424-441. doi: 10.1038/s41437-020-00382-w. Epub 2020 Nov 5.
Confined within the cold-stable Southern Ocean, Antarctic notothenioid fishes have undergone an evolutionary loss of the inducible heat shock response (HSR), while facing perpetual low-temperature challenges to cellular proteostasis. This study examines how evolution in chronic cold has affected the shared cellular apparatus that mediates proteostasis under normal and heat stressed states. To deduce Antarctic-specific changes, we compared native expression levels across the full suite of chaperome genes and assessed the structural integrity of two crucial HSR regulators - Heat Shock Factor 1 (HSF1) that activates HSR, and heat shock elements (HSEs), the binding sites for HSF1 - between Antarctic fishes and the basal temperate notothenioid Eleginops maclovinus. Native expression levels of Antarctic fish chaperomes showed very modest changes overall, contrary to the common view of constitutive upregulation in the cold. Only a few cytosolic HSP70 genes showed greater transcription, with only the ancestrally-inducible HSPA6 strongly upregulated across all Antarctic species. Additionally, the constant cold has apparently not relaxed the selective pressures on maintaining HSF1 and HSEs in Antarctic fish. Instead, we found HSF1 experienced intensified selective pressure, with conserved sequence changes in Antarctic species suggesting optimization for non-heat-stress functional roles. HSEs of the HSP70 gene family have largely remained conserved in canonical sequence motifs and copy numbers as in E. maclovinus, showing limited impact of relaxed selective pressure. This study shows that evolution in chronic cold has led to both subtle and distinctive changes in the cellular apparatus for proteostasis and HSR, with functional consequences amenable to experimental evaluation.
局限于寒冷稳定的南大洋中,南极鳕鱼已经经历了诱导热休克反应(HSR)的进化丧失,同时面临着细胞蛋白稳态的持续低温挑战。本研究探讨了慢性寒冷进化如何影响介导正常和热应激状态下蛋白稳态的共享细胞机制。为了推断出南极特有的变化,我们比较了整套伴侣蛋白基因的天然表达水平,并评估了两个关键 HSR 调节剂的结构完整性——激活 HSR 的热休克因子 1(HSF1)和热休克元件(HSEs),它们是 HSF1 的结合位点——在南极鱼类和基础温带鳕鱼 Eleginops maclovinus 之间。南极鱼类伴侣蛋白的天然表达水平总体上变化很小,与低温下组成性上调的常见观点相反。只有少数细胞质 HSP70 基因显示出更高的转录水平,只有祖先诱导的 HSPA6 在所有南极物种中强烈上调。此外,持续的寒冷显然没有放松对维持南极鱼类 HSF1 和 HSEs 的选择压力。相反,我们发现 HSF1 经历了强化的选择压力,南极物种中的保守序列变化表明其优化了非热应激功能角色。HSP70 基因家族的 HSE 在经典序列基序和拷贝数方面基本保持保守,与 E. maclovinus 相似,显示出放松选择压力的有限影响。本研究表明,慢性寒冷进化导致了细胞蛋白稳态和 HSR 的细胞机制发生了微妙而独特的变化,其功能后果可进行实验评估。