Laboratoire Dynamique et Organisation des Génomes (Dyogen), Institut de Biologie de l'Ecole Normale Supérieure - UMR 8197, INSERM U1024, Paris Cedex 05, France.
European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom.
Genome Biol Evol. 2019 Jan 1;11(1):220-231. doi: 10.1093/gbe/evy262.
The evolution of antifreeze glycoproteins has enabled notothenioid fish to flourish in the freezing waters of the Southern Ocean. Whereas successful at the biodiversity level to life in the cold, paradoxically at the cellular level these stenothermal animals have problems producing, folding, and degrading proteins at their ambient temperatures of -1.86 °C. In this first multi-species transcriptome comparison of the amino acid composition of notothenioid proteins with temperate teleost proteins, we show that, unlike psychrophilic bacteria, Antarctic fish provide little evidence for the mass alteration of protein amino acid composition to enhance protein folding and reduce protein denaturation in the cold. The exception was the significant overrepresentation of positions where leucine in temperate fish proteins was replaced by methionine in the notothenioid orthologues. We hypothesize that these extra methionines have been preferentially assimilated into the genome to act as redox sensors in the highly oxygenated waters of the Southern Ocean. This redox hypothesis is supported by analyses of notothenioids showing enrichment of genes associated with responses to environmental stress, particularly reactive oxygen species. So overall, although notothenioid fish show cold-associated problems with protein homeostasis, they may have modified only a selected number of biochemical pathways to work efficiently below 0 °C. Even a slight warming of the Southern Ocean might disrupt the critical functions of this handful of key pathways with considerable impacts for the functioning of this ecosystem in the future.
抗冻糖蛋白的进化使南极鳕鱼能够在南大洋的冰冷海水中繁衍生息。南极鳕鱼在生物多样性层面上成功适应了寒冷的环境,但矛盾的是,在细胞层面上,这些耐冷动物在其环境温度-1.86°C 下产生、折叠和降解蛋白质时存在问题。在对南极鳕鱼和温带硬骨鱼类的蛋白质氨基酸组成进行的首次多物种转录组比较中,我们表明,与嗜冷细菌不同,南极鱼类几乎没有证据表明大量改变蛋白质的氨基酸组成以增强蛋白质折叠并减少蛋白质在低温下的变性。例外的是,在温带鱼类蛋白质中的亮氨酸被南极鳕鱼的同源物中的蛋氨酸取代的位置显著增加。我们假设这些额外的蛋氨酸被优先同化到基因组中,作为在富含氧气的南大洋中起氧化还原传感器的作用。这种氧化还原假说得到了南极鳕鱼分析的支持,这些分析表明与环境应激反应相关的基因,特别是活性氧物种的富集。因此,尽管南极鳕鱼在蛋白质稳态方面表现出与寒冷相关的问题,但它们可能只对少数生化途径进行了修改,以便在 0°C 以下有效地发挥作用。即使南大洋稍有升温,也可能破坏这少数关键途径的关键功能,对未来该生态系统的功能产生重大影响。