文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宿主变量会干扰人类疾病的肠道微生物组研究。

Host variables confound gut microbiota studies of human disease.

机构信息

Metaorganism Immunity Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

National Institute of Allergy and Infectious Diseases Microbiome Program, National Institutes of Health, Bethesda, MD, USA.

出版信息

Nature. 2020 Nov;587(7834):448-454. doi: 10.1038/s41586-020-2881-9. Epub 2020 Nov 4.


DOI:10.1038/s41586-020-2881-9
PMID:33149306
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7677204/
Abstract

Low concordance between studies that examine the role of microbiota in human diseases is a pervasive challenge that limits the capacity to identify causal relationships between host-associated microorganisms and pathology. The risk of obtaining false positives is exacerbated by wide interindividual heterogeneity in microbiota composition, probably due to population-wide differences in human lifestyle and physiological variables that exert differential effects on the microbiota. Here we infer the greatest, generalized sources of heterogeneity in human gut microbiota profiles and also identify human lifestyle and physiological characteristics that, if not evenly matched between cases and controls, confound microbiota analyses to produce spurious microbial associations with human diseases. We identify alcohol consumption frequency and bowel movement quality as unexpectedly strong sources of gut microbiota variance that differ in distribution between healthy participants and participants with a disease and that can confound study designs. We demonstrate that for numerous prevalent, high-burden human diseases, matching cases and controls for confounding variables reduces observed differences in the microbiota and the incidence of spurious associations. On this basis, we present a list of host variables that we recommend should be captured in human microbiota studies for the purpose of matching comparison groups, which we anticipate will increase robustness and reproducibility in resolving the members of the gut microbiota that are truly associated with human disease.

摘要

研究微生物组在人类疾病中的作用时,各研究之间的一致性较低,这是一个普遍存在的挑战,限制了确定宿主相关微生物与病理学之间因果关系的能力。由于微生物组组成的个体间广泛异质性,获得假阳性的风险加剧,这可能是由于人类生活方式和生理变量在人群中的差异对微生物组产生不同的影响。在这里,我们推断出人类肠道微生物组谱中最大的、普遍的异质来源,还确定了人类生活方式和生理特征,如果在病例和对照组之间不平均匹配,会混淆微生物组分析,从而产生与人类疾病虚假的微生物关联。我们发现,饮酒频率和排便质量是肠道微生物组方差的意外强来源,它们在健康参与者和患病参与者之间的分布不同,并且可能会干扰研究设计。我们证明,对于许多常见的、高负担的人类疾病,为混杂变量匹配病例和对照组可以减少微生物组中观察到的差异和虚假关联的发生率。在此基础上,我们提出了一份宿主变量清单,我们建议在人类微生物组研究中捕获这些变量,以便匹配比较组,我们预计这将提高解决与人类疾病真正相关的肠道微生物组成员的稳健性和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9801b626db18/nihms-1633027-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/65546b032aeb/nihms-1633027-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9baa16aef59c/nihms-1633027-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/c0be04ecc1f6/nihms-1633027-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/eddd4353bc9a/nihms-1633027-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/56afdb6e19cc/nihms-1633027-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/1aef28690078/nihms-1633027-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/3ac1b4346089/nihms-1633027-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/a2972b8eb386/nihms-1633027-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/cc6703939533/nihms-1633027-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/576f70570932/nihms-1633027-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/c3e9777b2843/nihms-1633027-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9d8962144cd0/nihms-1633027-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/461a5fbe2d23/nihms-1633027-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9801b626db18/nihms-1633027-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/65546b032aeb/nihms-1633027-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9baa16aef59c/nihms-1633027-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/c0be04ecc1f6/nihms-1633027-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/eddd4353bc9a/nihms-1633027-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/56afdb6e19cc/nihms-1633027-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/1aef28690078/nihms-1633027-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/3ac1b4346089/nihms-1633027-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/a2972b8eb386/nihms-1633027-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/cc6703939533/nihms-1633027-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/576f70570932/nihms-1633027-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/c3e9777b2843/nihms-1633027-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9d8962144cd0/nihms-1633027-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/461a5fbe2d23/nihms-1633027-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5a/7677204/9801b626db18/nihms-1633027-f0014.jpg

相似文献

[1]
Host variables confound gut microbiota studies of human disease.

Nature. 2020-11

[2]
Machine learning-derived diagnostic model of epithelial ovarian cancer based on gut microbiome signatures.

J Transl Med. 2025-3-13

[3]
Determine independent gut microbiota-diseases association by eliminating the effects of human lifestyle factors.

BMC Microbiol. 2022-1-3

[4]
Comprehensive analysis of gut microbiota of a healthy population and covariates affecting microbial variation in two large Japanese cohorts.

BMC Microbiol. 2021-5-20

[5]
Ethnicity-matched case-control study reveals significant gut microbiota differences in Malaysian adults with type 2 diabetes.

J Med Microbiol. 2025-1

[6]
Obesity Measures and Dietary Parameters as Predictors of Gut Microbiota Phyla in Healthy Individuals.

Nutrients. 2020-9-3

[7]
Health and disease markers correlate with gut microbiome composition across thousands of people.

Nat Commun. 2020-10-15

[8]
Gut Microbiota Predict Expansion but Not Vancomycin-Resistant Acquisition.

mSphere. 2020-11-18

[9]
Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation.

Microbiome. 2021-3-16

[10]
Associations Among Diet, Health, Lifestyle, and Gut Microbiota Composition in the General French Population: Protocol for the Le French Gut - Le Microbiote Français Study.

JMIR Res Protoc. 2025-5-13

引用本文的文献

[1]
Linking the edible plant microbiome and human gut microbiome.

Gut Microbes. 2025-12

[2]
Altered gut microbial networks and metabolic pathways in multiple system atrophy: a comparative 16S rRNA study.

Front Neurosci. 2025-8-13

[3]
Effect of dietary zinc supplementation on the gastrointestinal microbiome and host gene expression in the mouse model of autism spectrum disorder.

Front Microbiol. 2025-8-12

[4]
The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study.

Nutrients. 2025-7-23

[5]
Exploring the relationship between co-abundance of gut microbiota and novel metabolic pathways in different subtypes of irritable bowel syndrome: insights from the American Gut Project.

Front Med (Lausanne). 2025-7-22

[6]
Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI.

Nat Rev Gastroenterol Hepatol. 2025-7-31

[7]
The role of the gut microbiota in chemotherapy response, efficacy and toxicity: a systematic review.

NPJ Precis Oncol. 2025-7-30

[8]
Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health.

Foods. 2025-7-8

[9]
Exploring the Gut and Oral Microbiomes in Psychoactive Substance Use: A Scoping Review of Clinical Studies.

J Neurochem. 2025-7

[10]
Restoration of antibiotic associated diarrhea induced gut microbiota disorder by using water-insoluble polysaccharides in C57BL/6J mice.

Front Nutr. 2025-7-10

本文引用的文献

[1]
Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping.

mSystems. 2017-3-7

[2]
Analysis of composition of microbiomes: a novel method for studying microbial composition.

Microb Ecol Health Dis. 2015-5-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索