Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain.
Department of Science & Education, The Field Museum, Chicago, Illinois.
Genome Biol Evol. 2020 Oct 1;12(10):1858-1868. doi: 10.1093/gbe/evaa189.
Lichen-forming fungi are known to produce a large number of secondary metabolites. Some metabolites are deposited in the cortical layer of the lichen thallus where they exert important ecological functions, such as UV filtering. The fact that closely related lineages of lichen-forming fungi can differ in cortical chemistry suggests that natural product biosynthesis in lichens can evolve independent from phylogenetic constraints. Usnic acid is one of the major cortical pigments in lichens. Here we used a comparative genomic approach on 46 lichen-forming fungal species of the Lecanoromycetes to elucidate the biosynthetic gene content and evolution of the gene cluster putatively responsible for the biosynthesis of usnic acid. Whole-genome sequences were gathered from taxa belonging to different orders and families of Lecanoromycetes, where Parmeliaceae is the most well-represented taxon, and analyzed with a variety of genomic tools. The highest number of biosynthetic gene clusters was found in Evernia prunastri, Pannoparmelia angustata, and Parmotrema austrosinense, respectively, and lowest in Canoparmelia nairobiensis, Bulbothrix sensibilis, and Hypotrachyna scytodes. We found that all studied species producing usnic acid contain the putative usnic acid biosynthetic gene cluster, whereas the cluster was absent in all genomes of species lacking usnic acid. The absence of the gene cluster was supported by an additional unsuccessful search for ß-ketoacylsynthase, the most conserved domain of the gene cluster, in the genomes of species lacking usnic acid. The domain architecture of this PKS cluster-homologous to the already known usnic acid PKS cluster (MPAS) and CYT450 (MPAO)-varies within the studied species, whereas the gene arrangement is highly similar in closely related taxa. We hypothesize that the ancestor of these lichen-forming fungi contained the putative usnic acid producing PKS cluster and that the gene cluster was lost repeatedly during the evolution of these groups. Our study provides insight into the genomic adaptations to the evolutionary success of these lichen-forming fungal species and sets a baseline for further exploration of biosynthetic gene content and its evolutionary significance.
地衣形成真菌被认为能产生大量的次生代谢物。一些代谢物沉积在地衣藻体的皮层中,在那里它们发挥着重要的生态功能,如过滤紫外线。事实上,亲缘关系密切的地衣形成真菌谱系在皮层化学上可能存在差异,这表明地衣中的天然产物生物合成可以独立于系统发育的限制而进化。地衣酸是地衣中的主要皮层色素之一。在这里,我们使用比较基因组学方法对 46 种地衣形成真菌的 Lecanoromycetes 进行了研究,以阐明可能负责地衣酸生物合成的基因簇的生物合成基因含量和进化。从属于 Lecanoromycetes 不同目和科的分类群中收集了全基因组序列,并使用多种基因组工具进行了分析。在 Evernia prunastri、Pannoparmelia angustata 和 Parmotrema austrosinense 中发现了最多数量的生物合成基因簇,而在 Canoparmelia nairobiensis、Bulbothrix sensibilis 和 Hypotrachyna scytodes 中发现了最少的生物合成基因簇。我们发现,所有产生地衣酸的研究物种都含有推定的地衣酸生物合成基因簇,而在所有缺乏地衣酸的物种的基因组中,该基因簇都不存在。由于在缺乏地衣酸的物种的基因组中,β-酮酰基合成酶(基因簇中最保守的结构域)的额外搜索没有成功,因此也支持了基因簇的缺失。该 PKS 簇的结构域架构与已经已知的地衣酸 PKS 簇(MPAS)和 CYT450(MPAO)相似,但在研究物种中存在差异,而在亲缘关系密切的分类群中,基因排列高度相似。我们假设这些地衣形成真菌的祖先含有推定的产生地衣酸的 PKS 簇,并且该基因簇在这些类群的进化过程中多次丢失。我们的研究为这些地衣形成真菌物种的进化成功的基因组适应提供了深入的了解,并为进一步探索生物合成基因含量及其进化意义奠定了基础。