Suppr超能文献

调节环辛四烯的贝尔德芳香三重态能量以最大化有机荧光团的自修复机制。

Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores.

机构信息

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065.

Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24305-24315. doi: 10.1073/pnas.2006517117. Epub 2020 Sep 10.

Abstract

Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.

摘要

明亮、光稳定且无毒的荧光对比剂对于生物成像至关重要。“自修复”染料中,三重态通过分子内猝灭,通过增加荧光团的亮度和寿命来实现荧光成像,同时减少产生促进光毒性的活性氧的生成。在这里,我们系统地研究了跨越可见光谱的菁类有机荧光团中的自修复机制。我们表明,可以物理改变环辛四烯的贝尔德芳香三重态能量,从而在有氧和无氧的情况下实现荧光团亮度和信噪比的数量级增强。我们利用这些进展,使用广角照明和基于相机的检测方法,以亚毫秒分辨率直接测量单个分子内的大规模构象动力学。这些发现表明,我们有能力在生理氧浓度下以千赫兹的频率在生物系统中对功能相关的构象过程进行成像,并为自修复有机荧光团设计的关键多变量参数提供了重要的启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aba/7533661/92080b96d8a7/pnas.2006517117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验