Suppr超能文献

利用人工智能赋能的心电图检测儿科患者左右心室功能障碍

Detection of Right and Left Ventricular Dysfunction in Pediatric Patients Using Artificial Intelligence-Enabled ECGs.

机构信息

Department of Pediatrics and Adolescent Medicine Mayo Clinic Rochester MN USA.

Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA.

出版信息

J Am Heart Assoc. 2024 Nov 5;13(21):e035201. doi: 10.1161/JAHA.124.035201. Epub 2024 Nov 4.

Abstract

BACKGROUND

Early detection of left and right ventricular systolic dysfunction (LVSD and RVSD respectively) in children can lead to intervention to reduce morbidity and death. Existing artificial intelligence algorithms can identify LVSD and RVSD in adults using a 12-lead ECG; however, its efficacy in children is uncertain. We aimed to develop novel artificial intelligence-enabled ECG algorithms for LVSD and RVSD detection in pediatric patients.

METHODS AND RESULTS

We identified 10 142 unique pediatric patients (age≤18) with a 10-second, 12-lead surface ECG within 14 days of a transthoracic echocardiogram, performed between 2002 and 2022. LVSD was defined quantitatively by left ventricular ejection fraction (LVEF). RVSD was defined semiquantitatively. Novel pediatric models for LVEF ≤35% and LVEF <50% achieved excellent test areas under the curve of 0.93 (95% CI, 0.89-0.98) and 0.88 (95% CI, 0.83-0.94) respectively. The model to detect LVEF <50% had a sensitivity of 0.85, specificity of 0.80, positive predictive value of 0.095, and negative predictive value of 0.995. In comparison, the previously validated adult data-derived model for LVEF <35% achieved an area under the curve of 0.87 (95% CI, 0.84-0.90) for LVEF ≤35% in children. A novel pediatric model for any RVSD detection reached a test area under the curve of 0.90 (0.87-0.94).

CONCLUSIONS

An artificial intelligence-enabled ECG demonstrates accurate detection of both LVSD and RVSD in pediatric patients. While adult-trained models offer good performance, improvements are seen when training pediatric-specific models.

摘要

背景

早期发现儿童左心室和右心室收缩功能障碍(分别为 LVSD 和 RVSD)可进行干预,从而降低发病率和死亡率。现有的人工智能算法可以使用 12 导联心电图识别成人的 LVSD 和 RVSD;然而,其在儿童中的效果尚不确定。我们旨在开发新的人工智能支持的心电图算法,用于检测儿科患者的 LVSD 和 RVSD。

方法和结果

我们在 2002 年至 2022 年期间,从 14 天内进行的 10 秒 12 导联体表心电图中,识别出 10242 名年龄≤18 岁的儿科患者(年龄≤18 岁)。左心室射血分数(LVEF)定量定义 LVSD。RVSD 采用半定量方法定义。LVEF≤35%和 LVEF<50%的新型儿科模型分别实现了优秀的测试曲线下面积 0.93(95%CI,0.89-0.98)和 0.88(95%CI,0.83-0.94)。用于检测 LVEF<50%的模型具有 0.85 的敏感性、0.80 的特异性、0.095 的阳性预测值和 0.995 的阴性预测值。相比之下,先前验证的用于 LVEF<35%的成人数据衍生模型在儿童中获得了 LVEF≤35%的曲线下面积 0.87(95%CI,0.84-0.90)。用于任何 RVSD 检测的新型儿科模型达到了测试曲线下面积 0.90(0.87-0.94)。

结论

人工智能支持的心电图能够准确检测儿科患者的 LVSD 和 RVSD。虽然成人训练模型表现良好,但培训儿科专用模型时会有改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验