Suppr超能文献

使用个体心电图导联的机器学习检测左心室射血分数降低的比较。

Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.

作者信息

Bergquist Jake A, Zenger Brian, Brundage James, MacLeod Rob S, Shah Rashmee, Ye Xiangyang, Lyones Ann, Ranjan Ravi, Tasdizen Tolga, Bunch T Jared, Steinberg Benjamin A

机构信息

Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA.

Nora Eccles Treadwell CVRTI, University of Utah, SLC, UT, USA.

出版信息

Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.047. Epub 2023 Dec 26.

Abstract

The 12-lead electrocardiogram (ECG) is the most common front-line diagnosis tool for assessing cardiovascular health, yet traditional ECG analysis cannot detect many diseases. Machine learning (ML) techniques have emerged as a powerful set of techniques for producing automated and robust ECG analysis tools that can often predict diseases and conditions not detectable by traditional ECG analysis. Many contemporary ECG-ML studies have focused on utilizing the full 12-lead ECG; however, with the increased availability of single-lead ECG data from wearable devices, there is a clear motivation to explore the development of single-lead ECG-ML techniques. In this study we developed and applied a deep learning architecture for the detection of low left ventricular ejection fraction (LVEF), and compared the performance of this architecture when it was trained with individual leads of the 12-lead ECG to the performance when trained using the entire 12-lead ECG. We observed that single-lead-trained networks performed similarly to the full 12-lead-trained network. We also noted patterns of agreement and disagreement between network low LVEF predictions across the different lead-trained networks.

摘要

12导联心电图(ECG)是评估心血管健康最常用的一线诊断工具,然而传统的心电图分析无法检测出许多疾病。机器学习(ML)技术已成为一套强大的技术,可用于生成自动化且强大的心电图分析工具,这些工具通常能够预测传统心电图分析无法检测到的疾病和状况。许多当代的心电图-机器学习研究都集中在利用完整的12导联心电图上;然而,随着可穿戴设备中单导联心电图数据的可用性增加,探索单导联心电图-机器学习技术的发展显然很有必要。在本研究中,我们开发并应用了一种深度学习架构来检测左心室射血分数(LVEF)降低的情况,并将该架构在使用12导联心电图的各个导联进行训练时的性能与使用整个12导联心电图进行训练时的性能进行了比较。我们观察到,单导联训练的网络与全12导联训练的网络表现相似。我们还注意到不同导联训练的网络在低LVEF预测方面的一致和不一致模式。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验