Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
Science. 2020 Dec 18;370(6523):1479-1484. doi: 10.1126/science.abe4747. Epub 2020 Nov 5.
Cost-effective, efficacious therapeutics are urgently needed to combat the COVID-19 pandemic. In this study, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD). We discovered Nbs with picomolar to femtomolar affinities that inhibit viral infection at concentrations below the nanograms-per-milliliter level, and we determined a structure of one of the most potent Nbs in complex with the RBD. Structural proteomics and integrative modeling revealed multiple distinct and nonoverlapping epitopes and indicated an array of potential neutralization mechanisms. We bioengineered multivalent Nb constructs that achieved ultrahigh neutralization potency (half-maximal inhibitory concentration as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization and aerosolization.
我们迫切需要具有成本效益且有效的疗法来应对 COVID-19 大流行。在这项研究中,我们使用骆驼科免疫和蛋白质组学来鉴定针对严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)刺突蛋白受体结合域(RBD)的大量高活性中和纳米抗体(Nb)。我们发现了具有皮摩尔至飞摩尔亲和力的 Nb,其在纳克/毫升以下的浓度下抑制病毒感染,我们还确定了一种最有效 Nb 与 RBD 复合物的结构。结构蛋白质组学和综合建模揭示了多个不同且不重叠的表位,并表明了一系列潜在的中和机制。我们对多价 Nb 构建体进行了生物工程改造,从而实现了超高的中和效力(半最大抑制浓度低至 0.058ng/ml),并可能防止突变逃逸。这些热稳定的 Nb 可以从微生物中大量快速生产,并能抵抗冻干和雾化。