Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA.
Nat Commun. 2021 Aug 3;12(1):4676. doi: 10.1038/s41467-021-24963-3.
Interventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants. We found that RBD Nbs are highly resistant to variants of concern (VOCs). High-resolution cryoelectron microscopy determination of eight Nb-bound structures reveals multiple potent neutralizing epitopes clustered into three classes: Class I targets ACE2-binding sites and disrupts host receptor binding. Class II binds highly conserved epitopes and retains activity against VOCs and RBD. Cass III recognizes unique epitopes that are likely inaccessible to antibodies. Systematic comparisons of neutralizing antibodies and Nbs provided insights into how Nbs target the spike to achieve high-affinity and broadly neutralizing activity. Structure-function analysis of Nbs indicates a variety of antiviral mechanisms. Our study may guide the rational design of pan-coronavirus vaccines and therapeutics.
急需针对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 变体的干预措施。针对 SARS-CoV-2 刺突的受体结合域 (RBD) 的稳定且有效的纳米抗体 (Nbs) 是很有前途的治疗方法。然而,目前尚不清楚 Nbs 是否能广泛中和循环变体。我们发现 RBD Nbs 对关注变体 (VOCs) 具有高度抗性。八种 Nb 结合结构的高分辨率冷冻电子显微镜测定揭示了多个有效的中和表位,分为三类:第一类靶标 ACE2 结合位点并破坏宿主受体结合。第二类结合高度保守的表位,对 VOC 和 RBD 保持活性。第三类识别独特的表位,这些表位可能无法被抗体识别。中和抗体和 Nbs 的系统比较提供了对 Nbs 如何靶向刺突以实现高亲和力和广泛中和活性的深入了解。Nbs 的结构-功能分析表明了多种抗病毒机制。我们的研究可能为泛冠状病毒疫苗和治疗药物的合理设计提供指导。