Suppr超能文献

与超长寿命和正常认知表型相关的遗传和非遗传因素。

Genetic and non-genetic factors associated with the phenotype of exceptional longevity & normal cognition.

机构信息

Department of Statistical Science, Duke University, Durham, NC, USA.

Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, NC, USA.

出版信息

Sci Rep. 2020 Nov 5;10(1):19140. doi: 10.1038/s41598-020-75446-2.

Abstract

In this study, we split 2156 individuals from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) data into two groups, establishing a phenotype of exceptional longevity & normal cognition versus cognitive impairment. We conducted a genome-wide association study (GWAS) to identify significant genetic variants and biological pathways that are associated with cognitive impairment and used these results to construct polygenic risk scores. We elucidated the important and robust factors, both genetic and non-genetic, in predicting the phenotype, using several machine learning models. The GWAS identified 28 significant SNPs at p-value [Formula: see text] significance level and we pinpointed four genes, ESR1, PHB, RYR3, GRIK2, that are associated with the phenotype though immunological systems, brain function, metabolic pathways, inflammation and diet in the CLHLS cohort. Using both genetic and non-genetic factors, four machine learning models have close prediction results for the phenotype measured in Area Under the Curve: random forest (0.782), XGBoost (0.781), support vector machine with linear kernel (0.780), and [Formula: see text] penalized logistic regression (0.780). The top four important and congruent features in predicting the phenotype identified by these four models are: polygenic risk score, sex, age, and education.

摘要

在这项研究中,我们将中国健康长寿纵向研究(CLHLS)数据中的 2156 个人分为两组,建立了一个具有异常长寿和正常认知与认知障碍表型的人群。我们进行了全基因组关联研究(GWAS),以确定与认知障碍相关的显著遗传变异和生物学途径,并利用这些结果构建多基因风险评分。我们使用几种机器学习模型阐明了预测表型的重要且稳健的遗传和非遗传因素。GWAS 在 p 值 [Formula: see text] 显著性水平下确定了 28 个显著的 SNPs,我们发现了四个与表型相关的基因,ESR1、PHB、RYR3、GRIK2,这些基因通过 CLHLS 队列中的免疫、大脑功能、代谢途径、炎症和饮食与表型相关。使用遗传和非遗传因素,四种机器学习模型对曲线下面积(AUC)测量的表型进行了接近的预测:随机森林(0.782)、XGBoost(0.781)、带线性核的支持向量机(0.780)和[Formula: see text]惩罚逻辑回归(0.780)。这四个模型识别的预测表型的四个重要且一致的特征是:多基因风险评分、性别、年龄和教育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b9e/7645680/56d0355f0283/41598_2020_75446_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验