Suppr超能文献

利用带有 SARS-CoV-2 刺突糖蛋白的慢病毒颗粒对患者血清中的 SARS-CoV-2 中和抗体进行有效筛选。

Effective screening of SARS-CoV-2 neutralizing antibodies in patient serum using lentivirus particles pseudotyped with SARS-CoV-2 spike glycoprotein.

机构信息

Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.

Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA.

出版信息

Sci Rep. 2020 Nov 5;10(1):19076. doi: 10.1038/s41598-020-76135-w.

Abstract

Pseuodotyped particles have significant importance and use in virology as tools for studying the biology of highly pathogenic viruses in a lower biosafety environment. The biological, chemical, and serological studies of the recently emerged SARS-CoV-2 will be greatly aided by the development and optimization of a suitable pseudotyping system. Here, we pseudotyped the SARS-CoV-2 Spike glycoprotein (SPG) on a traditional retroviral (MMLV) as well as a third generation lentiviral (pLV) vector and tested the transduction efficiency in several mammalian cell lines expressing SARS-CoV-2 receptor hACE2. While MMLV pseudotyped the vesicular stomatitis virus G glycoprotein (VSV-G) efficiently, it could not pseudotype the full-length SPG. In contrast, pLV pseudotyped both glycoproteins efficiently; however, much higher titers of pLV-G particles were produced. Among all the tested mammalian cells, 293Ts expressing hACE2 were most efficiently transduced using the pLV-S system. The pLV-S particles were efficiently neutralized by diluted serum (>:640) from recently recovered COVID-19 patients who showed high SARS-CoV-2 specific IgM and IgG levels. In summary, pLV-S pseudotyped virus provides a valid screening tool for the presence of anti SARS-CoV-2 specific neutralizing antibodies in convalescent patient serum.

摘要

伪型病毒颗粒在病毒学中具有重要意义和用途,可用作在较低生物安全环境中研究高致病性病毒生物学的工具。最近出现的 SARS-CoV-2 的生物学、化学和血清学研究将极大地受益于合适的伪型系统的开发和优化。在这里,我们将 SARS-CoV-2 的刺突糖蛋白(SPG)伪型化为传统逆转录病毒(MMLV)和第三代慢病毒(pLV)载体,并在表达 SARS-CoV-2 受体 hACE2 的几种哺乳动物细胞系中测试了转导效率。虽然 MMLV 能够有效地伪型化水疱性口炎病毒 G 糖蛋白(VSV-G),但它不能伪型化全长 SPG。相比之下,pLV 能够有效地伪型化这两种糖蛋白;然而,pLV-G 颗粒的产量要高得多。在所有测试的哺乳动物细胞中,表达 hACE2 的 293Ts 使用 pLV-S 系统被有效地转导。来自最近康复的 COVID-19 患者的稀释血清(>:640)能够有效地中和 pLV-S 颗粒,这些患者表现出高 SARS-CoV-2 特异性 IgM 和 IgG 水平。总之,pLV-S 伪型病毒为在恢复期患者血清中筛选针对 SARS-CoV-2 的特异性中和抗体提供了有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e50/7645753/f068a5c567f8/41598_2020_76135_Fig1_HTML.jpg

相似文献

2
Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
J Virol. 2020 Oct 14;94(21). doi: 10.1128/JVI.01062-20.
4
Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.
J Virol. 2021 Jan 13;95(3). doi: 10.1128/JVI.01987-20.

引用本文的文献

1
Evidence of SARS-CoV-2 Antibody in Mississippi White-Tailed Deer.
Vector Borne Zoonotic Dis. 2024 Oct;24(10):682-688. doi: 10.1089/vbz.2023.0144. Epub 2024 May 2.
2
Serological assessment of the durability of vaccine-mediated protection against SARS-CoV-2 infection.
Hum Vaccin Immunother. 2024 Dec 31;20(1):2308375. doi: 10.1080/21645515.2024.2308375. Epub 2024 Feb 15.
3
Structure, anti-SARS-CoV-2, and anticoagulant effects of two sulfated galactans from the red alga Botryocladia occidentalis.
Int J Biol Macromol. 2023 May 31;238:124168. doi: 10.1016/j.ijbiomac.2023.124168. Epub 2023 Mar 22.
4
Pseudotyped Viruses for Retroviruses.
Adv Exp Med Biol. 2023;1407:61-84. doi: 10.1007/978-981-99-0113-5_4.
5
SARS-CoV-2 Spike protein activates TMEM16F-mediated platelet procoagulant activity.
Front Cardiovasc Med. 2023 Jan 4;9:1013262. doi: 10.3389/fcvm.2022.1013262. eCollection 2022.
9
Immune response against SARS-CoV-2 variants: the role of neutralization assays.
NPJ Vaccines. 2021 Nov 29;6(1):142. doi: 10.1038/s41541-021-00404-6.
10
Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection.
J Biol Chem. 2021 Oct;297(4):101207. doi: 10.1016/j.jbc.2021.101207. Epub 2021 Sep 17.

本文引用的文献

2
Development of an inactivated vaccine candidate for SARS-CoV-2.
Science. 2020 Jul 3;369(6499):77-81. doi: 10.1126/science.abc1932. Epub 2020 May 6.
3
A human monoclonal antibody blocking SARS-CoV-2 infection.
Nat Commun. 2020 May 4;11(1):2251. doi: 10.1038/s41467-020-16256-y.
5
Effectiveness of convalescent plasma therapy in severe COVID-19 patients.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9490-9496. doi: 10.1073/pnas.2004168117. Epub 2020 Apr 6.
6
Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses.
Trends Immunol. 2020 May;41(5):355-359. doi: 10.1016/j.it.2020.03.007. Epub 2020 Apr 2.
7
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
8
Responding to Covid-19 - A Once-in-a-Century Pandemic?
N Engl J Med. 2020 Apr 30;382(18):1677-1679. doi: 10.1056/NEJMp2003762. Epub 2020 Feb 28.
9
A new coronavirus associated with human respiratory disease in China.
Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3.
10
A Novel Coronavirus from Patients with Pneumonia in China, 2019.
N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验