Suppr超能文献

对流行病学研究有用的轨迹建模技术:方法的比较叙述性综述

Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches.

作者信息

Nguena Nguefack Hermine Lore, Pagé M Gabrielle, Katz Joel, Choinière Manon, Vanasse Alain, Dorais Marc, Samb Oumar Mallé, Lacasse Anaïs

机构信息

Département des Sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Québec, Canada.

Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.

出版信息

Clin Epidemiol. 2020 Oct 30;12:1205-1222. doi: 10.2147/CLEP.S265287. eCollection 2020.

Abstract

Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers' efficiency when it comes to choosing the most appropriate technique that best suits their research questions.

摘要

轨迹建模技术已被开发用于确定特定人群中的亚组,并且越来越多地用于更好地理解健康结局模式随时间的个体内和个体间变异性。本叙述性综述的目的是探索对流行病学研究有用的各种轨迹建模方法,并概述其应用和差异。还涵盖了轨迹建模结果报告的指南。所综述的轨迹建模技术包括潜在类别建模方法,即生长混合建模(GMM)、基于群体的轨迹建模(GBTM)、潜在类别分析(LCA)和潜在转变分析(LTA)。还将其与其他以个体为中心的统计方法进行了比较,如聚类分析(CA)和序列分析(SA)。根据研究问题和数据类型,在纵向研究中测量的健康结局轨迹建模可使用多种方法。然而,在现有科学文献中,用于指代潜在类别建模方法(GMM、GBTM、LTA、LCA)的各种术语使用不一致且经常互换。术语和报告指南的一致性提高有可能提高研究人员在选择最适合其研究问题的技术时的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c53/7608582/164063dbf23d/CLEP-12-1205-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验