Suppr超能文献

KinFragLib:利用亚口袋聚焦的碎片化和重组探索激酶抑制剂空间。

KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination.

机构信息

In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.

Digital Technologies, Computational Molecular Design, Bayer AG, 13342 Berlin, Germany.

出版信息

J Chem Inf Model. 2020 Dec 28;60(12):6081-6094. doi: 10.1021/acs.jcim.0c00839. Epub 2020 Nov 6.

Abstract

Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. In this context, fragment-based drug design strategies have been successfully applied to develop novel kinase inhibitors. These strategies usually follow a knowledge-driven approach to optimize a focused set of fragments to a potent kinase inhibitor. Alternatively, KinFragLib explores and extends the chemical space of kinase inhibitors using data-driven fragmentation and recombination. The method builds on available structural kinome data from the KLIFS database for over 2500 kinase DFG-in structures cocrystallized with noncovalent kinase ligands. The computational fragmentation method splits the ligands into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers. The resulting fragment library consists of six subpocket pools with over 7000 fragments, available at https://github.com/volkamerlab/KinFragLib. KinFragLib offers two main applications: on the one hand, in-depth analyses of the chemical space of known kinase inhibitors, subpocket characteristics, and connections, and on the other hand, subpocket-informed recombination of fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments generated 6.7 million molecules. This combinatorial library contains, besides some known kinase inhibitors, more than 99% novel chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski's rule of five.

摘要

蛋白激酶在许多细胞信号转导过程中发挥着关键作用,使它们成为最重要的药物靶点家族之一。在这种情况下,基于片段的药物设计策略已成功应用于开发新型激酶抑制剂。这些策略通常采用基于知识的方法来优化一组聚焦片段,以获得有效的激酶抑制剂。另一方面,KinFragLib 使用基于数据的片段化和重组方法来探索和扩展激酶抑制剂的化学空间。该方法基于 KLIFS 数据库中超过 2500 个激酶 DFG-in 结构与非共价激酶配体共结晶的结构激酶组数据。该计算片段化方法根据其与六个预定义的功能相关亚口袋中心的 3D 接近度将配体分割成片段。由此产生的片段库由六个亚口袋池组成,包含超过 7000 个片段,可在 https://github.com/volkamerlab/KinFragLib 上获得。KinFragLib 提供了两个主要应用:一方面,对已知激酶抑制剂的化学空间、亚口袋特征和连接进行深入分析,另一方面,基于亚口袋信息的片段重组生成潜在的新型抑制剂。后者表明,仅重组 624 个代表性片段的子集就生成了 670 万个分子。这个组合文库除了包含一些已知的激酶抑制剂外,与 ChEMBL 相比,还包含超过 99%的新型化学物质,并且有 63%的分子符合 Lipinski 的五规则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验