Computer Science Engineering, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India.
Computer Science and Engineering Department, NIT Hamirpur, India.
Curr Pharm Des. 2021;27(8):1103-1111. doi: 10.2174/1381612826666201106090938.
In cancer therapies, drug combinations have shown significant accuracy and minimal side effects than the single drug administration. Therefore, drug synergy has drawn great interest from pharmaceutical companies and researchers. Unfortunately, the prediction of drug synergy score was carried out based on the small group of drugs.
Due to the advancement in high-throughput screening (HTS), the size of drug synergy datasets has grown enormously in recent years. Hence, machine learning models have been utilized to predict the drug synergy score. However, the majority of these machine learning models suffer from over-fitting and hyperparameters tuning issues.
A novel deep bidirectional mixture density network (BMDN) model is proposed. A dynamic mutationbased multi-objective differential evolution is used to optimize the hyper-parameters of BMDN. Extensive is conducted on the NCI-ALMANAC drug synergy dataset that consists of 2,90,000 synergy determinations.
Experimental results reveal that BMDN outperforms the existing drug synergy models in terms of various performance metrics.
在癌症治疗中,药物联合治疗比单一药物治疗显示出更高的准确性和更小的副作用。因此,药物协同作用引起了制药公司和研究人员的极大兴趣。不幸的是,药物协同作用评分的预测是基于一小部分药物进行的。
由于高通量筛选(HTS)的进步,近年来药物协同作用数据集的规模已经大大增长。因此,机器学习模型已被用于预测药物协同作用评分。然而,这些机器学习模型中的大多数都存在过拟合和超参数调整问题。
提出了一种新的深度双向混合密度网络(BMDN)模型。一种基于动态突变的多目标差分进化算法用于优化 BMDN 的超参数。在包含 290000 个协同作用测定的 NCI-ALMANAC 药物协同作用数据集上进行了广泛的实验。
实验结果表明,BMDN 在各种性能指标方面优于现有的药物协同作用模型。