Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, HP 177005, India.
Information Technology Department, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144027, India.
J Bioinform Comput Biol. 2023 Jun;21(3):2350014. doi: 10.1142/S0219720023500142. Epub 2023 Jun 22.
Drug synergy has emerged as a viable treatment option for malignancy. Drug synergy reduces toxicity, improves therapeutic efficacy, and overcomes drug resistance when compared to single-drug doses. Thus, it has attained significant interest from academics and pharmaceutical organizations. Due to the enormous combinatorial search space, it is impossible to experimentally validate every conceivable combination for synergistic interaction. Due to advancement in artificial intelligence, the computational techniques are being utilized to identify synergistic drug combinations, whereas prior literature has focused on treating certain malignancies. As a result, high-order drug combinations have been given little consideration. Here, DrugSymby, a novel deep-learning model is proposed for predicting drug combinations. To achieve this objective, the data is collected from datasets that include information on anti-cancer drugs, gene expression profiles of malignant cell lines, and screening data against a wide range of malignant cell lines. The proposed model was developed using this data and achieved high performance with f1-score of 0.98, recall of 0.99, and precision of 0.98. The evaluation results of DrugSymby model utilizing drug combination screening data from the NCI-ALMANAC screening dataset indicate drug combination prediction is effective. The proposed model will be used to determine the most successful synergistic drug combinations, and also increase the possibilities of exploring new drug combinations.
药物协同作用已成为治疗恶性肿瘤的一种可行方法。与单剂量药物相比,药物协同作用可降低毒性、提高治疗效果并克服耐药性,因此引起了学术界和制药组织的极大关注。由于组合搜索空间巨大,不可能通过实验验证每一种协同作用的组合。由于人工智能的进步,正在利用计算技术来识别协同药物组合,而先前的文献主要集中在治疗某些恶性肿瘤上。因此,高阶药物组合很少被考虑。在这里,提出了一种名为 DrugSymby 的新型深度学习模型,用于预测药物组合。为了实现这一目标,从包括抗癌药物信息、恶性细胞系基因表达谱和针对广泛恶性细胞系的筛选数据的数据集收集数据。使用该数据开发了所提出的模型,其 f1 分数为 0.98、召回率为 0.99 和精度为 0.98,性能很高。利用 NCI-ALMANAC 筛选数据集的药物组合筛选数据对 DrugSymby 模型的评估结果表明,药物组合预测是有效的。所提出的模型将用于确定最成功的协同药物组合,并增加探索新药物组合的可能性。