Suppr超能文献

用于使用胸部X光图像检测新冠肺炎患者的新型深度迁移学习模型。

Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images.

作者信息

Kumar N, Gupta M, Gupta D, Tiwari S

机构信息

Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi, India.

Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India.

出版信息

J Ambient Intell Humaniz Comput. 2023;14(1):469-478. doi: 10.1007/s12652-021-03306-6. Epub 2021 May 15.

Abstract

Around the world, more than 250 countries are affected by the COVID-19 pandemic, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This outbreak can be controlled only by the diagnosis of the COVID-19 infection in early stages. It is found that the radiographic images are ideal for the fastest diagnosis of COVID-19 infection. This paper proposes an ensemble model which detects the COVID-19 infection in the early stage with the use of chest X-ray images. The transfer learning enables to reuse the pretrained models. The ensemble learning integrates various transfer learning models, i.e., EfficientNet, GoogLeNet, and XceptionNet, to design the proposed model. These models can categorize patients as COVID-19 (+), pneumonia (+), tuberculosis (+), or healthy. The proposed model enhances the classifier's generalization ability for both binary and multiclass COVID-19 datasets. Two popular datasets are used to evaluate the performance of the proposed ensemble model. The comparative analysis validates that the proposed model outperforms the state-of-art models in terms of various performance metrics.

摘要

在全球范围内,超过250个国家受到由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新冠疫情影响。只有在早期诊断出新冠病毒感染,才能控制此次疫情爆发。研究发现,放射影像对于最快诊断新冠病毒感染非常理想。本文提出了一种集成模型,该模型利用胸部X光图像在早期阶段检测新冠病毒感染。迁移学习能够重用预训练模型。集成学习整合了各种迁移学习模型,即高效神经网络(EfficientNet)、谷歌神经网络(GoogLeNet)和深度可分离卷积神经网络(XceptionNet),来设计所提出的模型。这些模型可以将患者分类为新冠病毒阳性(COVID-19(+))、肺炎阳性(pneumonia(+))、肺结核阳性(tuberculosis(+))或健康。所提出的模型提高了分类器对二元和多类新冠病毒数据集的泛化能力。使用了两个流行的数据集来评估所提出的集成模型的性能。对比分析验证了所提出的模型在各种性能指标方面优于现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e5/8123104/a0ea15573f23/12652_2021_3306_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验