Suppr超能文献

用于基于医学影像的新冠病毒检测与诊断的机器学习

Machine learning for medical imaging-based COVID-19 detection and diagnosis.

作者信息

Rehouma Rokaya, Buchert Michael, Chen Yi-Ping Phoebe

机构信息

School of Cancer Medicine La Trobe University Melbourne Victoria Australia.

Tumour Microenvironment and Cancer Signaling Group Olivia Newton-John Cancer Research Institute Melbourne Victoria Australia.

出版信息

Int J Intell Syst. 2021 Sep;36(9):5085-5115. doi: 10.1002/int.22504. Epub 2021 May 31.

Abstract

The novel coronavirus disease 2019 (COVID-19) is considered to be a significant health challenge worldwide because of its rapid human-to-human transmission, leading to a rise in the number of infected people and deaths. The detection of COVID-19 at the earliest stage is therefore of paramount importance for controlling the pandemic spread and reducing the mortality rate. The real-time reverse transcription-polymerase chain reaction, the primary method of diagnosis for coronavirus infection, has a relatively high false negative rate while detecting early stage disease. Meanwhile, the manifestations of COVID-19, as seen through medical imaging methods such as computed tomography (CT), radiograph (X-ray), and ultrasound imaging, show individual characteristics that differ from those of healthy cases or other types of pneumonia. Machine learning (ML) applications for COVID-19 diagnosis, detection, and the assessment of disease severity based on medical imaging have gained considerable attention. Herein, we review the recent progress of ML in COVID-19 detection with a particular focus on ML models using CT and X-ray images published in high-ranking journals, including a discussion of the predominant features of medical imaging in patients with COVID-19. Deep Learning algorithms, particularly convolutional neural networks, have been utilized widely for image segmentation and classification to identify patients with COVID-19 and many ML modules have achieved remarkable predictive results using datasets with limited sample sizes.

摘要

2019年新型冠状病毒病(COVID-19)因其在人与人之间的快速传播,导致感染人数和死亡人数上升,被认为是全球一项重大的健康挑战。因此,尽早检测出COVID-19对于控制疫情传播和降低死亡率至关重要。实时逆转录聚合酶链反应作为冠状病毒感染的主要诊断方法,在检测早期疾病时假阴性率相对较高。同时,通过计算机断层扫描(CT)、X光片(X射线)和超声成像等医学成像方法观察到的COVID-19表现,呈现出与健康病例或其他类型肺炎不同的个体特征。基于医学成像的机器学习(ML)在COVID-19诊断、检测和疾病严重程度评估方面的应用受到了广泛关注。在此,我们回顾了ML在COVID-19检测方面的最新进展,特别关注在高影响力期刊上发表的使用CT和X光图像的ML模型,包括对COVID-19患者医学成像主要特征的讨论。深度学习算法,特别是卷积神经网络,已被广泛用于图像分割和分类以识别COVID-19患者,并且许多ML模块使用样本量有限的数据集取得了显著的预测结果。

相似文献

1
Machine learning for medical imaging-based COVID-19 detection and diagnosis.
Int J Intell Syst. 2021 Sep;36(9):5085-5115. doi: 10.1002/int.22504. Epub 2021 May 31.
2
A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods.
Appl Soft Comput. 2021 Jul;105:107323. doi: 10.1016/j.asoc.2021.107323. Epub 2021 Mar 17.
3
COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images.
Artif Intell Med. 2022 Dec;134:102427. doi: 10.1016/j.artmed.2022.102427. Epub 2022 Oct 17.
4
COVID-19 Hierarchical Classification Using a Deep Learning Multi-Modal.
Sensors (Basel). 2024 Apr 20;24(8):2641. doi: 10.3390/s24082641.
5
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.
6
Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks.
Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1379-1389. doi: 10.1007/s10096-020-03901-z. Epub 2020 Apr 27.
7
Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images.
Chaos Solitons Fractals. 2021 Apr;145:110749. doi: 10.1016/j.chaos.2021.110749. Epub 2021 Feb 10.
8
Machine learning-based automatic detection of novel coronavirus (COVID-19) disease.
Multimed Tools Appl. 2022;81(10):13731-13750. doi: 10.1007/s11042-022-12508-9. Epub 2022 Feb 23.
9
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.
Int J Comput Assist Radiol Surg. 2021 Feb;16(2):197-206. doi: 10.1007/s11548-020-02305-w. Epub 2021 Jan 9.

引用本文的文献

1
A Large-Scale IoT-Based Scheme for Real-Time Prediction of Infectious Disease Symptoms.
Mob Netw Appl. 2023 Feb 2:1-19. doi: 10.1007/s11036-023-02111-z.
2
Multi-Modal Machine Learning Approach for COVID-19 Detection Using Biomarkers and X-Ray Imaging.
Diagnostics (Basel). 2024 Dec 13;14(24):2800. doi: 10.3390/diagnostics14242800.
3
MC-ViViT: Multi-branch Classifier-ViViT to Detect Mild Cognitive Impairment in Older Adults Using Facial Videos.
Expert Syst Appl. 2024 Mar 15;238(Pt B). doi: 10.1016/j.eswa.2023.121929. Epub 2023 Oct 4.
5
Advances in artificial intelligence in thyroid-associated ophthalmopathy.
Front Endocrinol (Lausanne). 2024 Apr 23;15:1356055. doi: 10.3389/fendo.2024.1356055. eCollection 2024.
6
COVID-19 infection analysis framework using novel boosted CNNs and radiological images.
Sci Rep. 2023 Dec 9;13(1):21837. doi: 10.1038/s41598-023-49218-7.
7
Towards Building a Trustworthy Deep Learning Framework for Medical Image Analysis.
Sensors (Basel). 2023 Sep 27;23(19):8122. doi: 10.3390/s23198122.
8
A comprehensive review of federated learning for COVID-19 detection.
Int J Intell Syst. 2022 Mar;37(3):2371-2392. doi: 10.1002/int.22777. Epub 2021 Dec 6.
10
Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging.
IPEM Transl. 2022 Nov-Dec;3:100008. doi: 10.1016/j.ipemt.2022.100008. Epub 2022 Oct 26.

本文引用的文献

1
COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data.
IEEE Access. 2020 Aug 14;8:149808-149824. doi: 10.1109/ACCESS.2020.3016780. eCollection 2020.
2
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network.
Appl Intell (Dordr). 2021;51(2):854-864. doi: 10.1007/s10489-020-01829-7. Epub 2020 Sep 5.
3
The Effect of Image Resolution on Deep Learning in Radiography.
Radiol Artif Intell. 2020 Jan 22;2(1):e190015. doi: 10.1148/ryai.2019190015. eCollection 2020 Jan.
4
Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks.
Radiol Artif Intell. 2020 Jul 22;2(4):e200079. doi: 10.1148/ryai.2020200079. eCollection 2020 Jul.
5
Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review.
Radiol Cardiothorac Imaging. 2020 Feb 13;2(1):e200034. doi: 10.1148/ryct.2020200034. eCollection 2020 Feb.
6
Chest Imaging Appearance of COVID-19 Infection.
Radiol Cardiothorac Imaging. 2020 Feb 13;2(1):e200028. doi: 10.1148/ryct.2020200028. eCollection 2020 Feb.
7
A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT.
IEEE Trans Med Imaging. 2020 Aug;39(8):2615-2625. doi: 10.1109/TMI.2020.2995965.
8
MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images.
Biomed Signal Process Control. 2021 Feb;64:102257. doi: 10.1016/j.bspc.2020.102257. Epub 2020 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验