Suppr超能文献

基于前注意残差学习的 CT 图像新冠肺炎更具判别性筛查。

Prior-Attention Residual Learning for More Discriminative COVID-19 Screening in CT Images.

出版信息

IEEE Trans Med Imaging. 2020 Aug;39(8):2572-2583. doi: 10.1109/TMI.2020.2994908.

Abstract

We propose a conceptually simple framework for fast COVID-19 screening in 3D chest CT images. The framework can efficiently predict whether or not a CT scan contains pneumonia while simultaneously identifying pneumonia types between COVID-19 and Interstitial Lung Disease (ILD) caused by other viruses. In the proposed method, two 3D-ResNets are coupled together into a single model for the two above-mentioned tasks via a novel prior-attention strategy. We extend residual learning with the proposed prior-attention mechanism and design a new so-called prior-attention residual learning (PARL) block. The model can be easily built by stacking the PARL blocks and trained end-to-end using multi-task losses. More specifically, one 3D-ResNet branch is trained as a binary classifier using lung images with and without pneumonia so that it can highlight the lesion areas within the lungs. Simultaneously, inside the PARL blocks, prior-attention maps are generated from this branch and used to guide another branch to learn more discriminative representations for the pneumonia-type classification. Experimental results demonstrate that the proposed framework can significantly improve the performance of COVID-19 screening. Compared to other methods, it achieves a state-of-the-art result. Moreover, the proposed method can be easily extended to other similar clinical applications such as computer-aided detection and diagnosis of pulmonary nodules in CT images, glaucoma lesions in Retina fundus images, etc.

摘要

我们提出了一个概念简单的框架,用于快速在 3D 胸部 CT 图像中进行 COVID-19 筛查。该框架可以有效地预测 CT 扫描是否包含肺炎,同时识别 COVID-19 和由其他病毒引起的间质性肺病(ILD)之间的肺炎类型。在提出的方法中,两个 3D-ResNets 通过一种新的先验注意力策略耦合到单个模型中,用于上述两个任务。我们通过所提出的先验注意力机制扩展了残差学习,并设计了一种新的称为先验注意力残差学习(PARL)的块。可以通过堆叠 PARL 块轻松构建模型,并使用多任务损失进行端到端训练。更具体地说,使用有和没有肺炎的肺部图像训练一个 3D-ResNet 分支作为二进制分类器,以便突出肺部内的病变区域。同时,在 PARL 块内部,从该分支生成先验注意力图,并用于指导另一个分支学习更具鉴别力的肺炎类型分类表示。实验结果表明,所提出的框架可以显著提高 COVID-19 筛查的性能。与其他方法相比,它实现了最先进的结果。此外,该方法可以很容易地扩展到其他类似的临床应用,如 CT 图像中的计算机辅助检测和诊断肺结节、视网膜眼底图像中的青光眼病变等。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验