Suppr超能文献

基于注意力机制的深度三维多实例学习在 COVID-19 中的精准筛查。

Accurate Screening of COVID-19 Using Attention-Based Deep 3D Multiple Instance Learning.

出版信息

IEEE Trans Med Imaging. 2020 Aug;39(8):2584-2594. doi: 10.1109/TMI.2020.2996256.

Abstract

Automated Screening of COVID-19 from chest CT is of emergency and importance during the outbreak of SARS-CoV-2 worldwide in 2020. However, accurate screening of COVID-19 is still a massive challenge due to the spatial complexity of 3D volumes, the labeling difficulty of infection areas, and the slight discrepancy between COVID-19 and other viral pneumonia in chest CT. While a few pioneering works have made significant progress, they are either demanding manual annotations of infection areas or lack of interpretability. In this paper, we report our attempt towards achieving highly accurate and interpretable screening of COVID-19 from chest CT with weak labels. We propose an attention-based deep 3D multiple instance learning (AD3D-MIL) where a patient-level label is assigned to a 3D chest CT that is viewed as a bag of instances. AD3D-MIL can semantically generate deep 3D instances following the possible infection area. AD3D-MIL further applies an attention-based pooling approach to 3D instances to provide insight into each instance's contribution to the bag label. AD3D-MIL finally learns Bernoulli distributions of the bag-level labels for more accessible learning. We collected 460 chest CT examples: 230 CT examples from 79 patients with COVID-19, 100 CT examples from 100 patients with common pneumonia, and 130 CT examples from 130 people without pneumonia. A series of empirical studies show that our algorithm achieves an overall accuracy of 97.9%, AUC of 99.0%, and Cohen kappa score of 95.7%. These advantages endow our algorithm as an efficient assisted tool in the screening of COVID-19.

摘要

从胸部 CT 自动筛查 2020 年全球 SARS-CoV-2 爆发期间的 COVID-19 是当务之急,十分重要。然而,由于 3D 体积的空间复杂性、感染区域的标记困难以及 COVID-19 与胸部 CT 中其他病毒性肺炎之间的细微差异,准确筛查 COVID-19 仍然是一个巨大的挑战。虽然一些开创性的工作已经取得了重大进展,但它们要么需要手动标记感染区域,要么缺乏可解释性。在本文中,我们报告了我们在使用弱标签从胸部 CT 中实现 COVID-19 高度准确和可解释筛查方面的尝试。我们提出了一种基于注意力的深度 3D 多实例学习(AD3D-MIL),其中将患者级标签分配给被视为实例袋的 3D 胸部 CT。AD3D-MIL 可以根据可能的感染区域生成语义上的深 3D 实例。AD3D-MIL 进一步应用基于注意力的池化方法对 3D 实例进行处理,以深入了解每个实例对袋标签的贡献。AD3D-MIL 最后学习袋级标签的伯努利分布,以实现更便捷的学习。我们收集了 460 个胸部 CT 示例:230 个来自 79 名 COVID-19 患者的 CT 示例,100 个来自 100 名普通肺炎患者的 CT 示例,以及 130 名无肺炎患者的 CT 示例。一系列实证研究表明,我们的算法总体准确率为 97.9%,AUC 为 99.0%,Cohen kappa 得分 95.7%。这些优势使我们的算法成为 COVID-19 筛查的有效辅助工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验