Department of Molecular and Integrative Physiology
Department of Molecular and Integrative Physiology.
J Neurosci. 2020 Dec 2;40(49):9455-9466. doi: 10.1523/JNEUROSCI.2069-20.2020. Epub 2020 Nov 6.
Gonadal steroids modulate growth hormone (GH) secretion and the pubertal growth spurt via undefined central pathways. GH-releasing hormone (GHRH) neurons express estrogen receptor α (ERα) and androgen receptor (AR), suggesting changing levels of gonadal steroids during puberty directly modulate the somatotropic axis. We generated mice with deletion of ERα in GHRH cells (GHRH), which displayed reduced body length in both sexes. Timing of puberty onset was similar in both groups, but puberty completion was delayed in GHRH females. Lack of AR in GHRH cells (GHRH mice) induced no changes in body length, but puberty completion was also delayed in females. Using a mouse model with two reporter genes, we observed that, while GHRH neurons minimally colocalize with Kiss1 in prepubertal mice, ∼30% of GHRH neurons coexpressed both reporter genes in adult females, but not in males. Developmental analysis of and expression suggested that a subpopulation of ERα neurons in the arcuate nucleus of female mice undergoes a shift in phenotype, from GHRH to Kiss1, during pubertal transition. Our findings demonstrate that direct actions of gonadal steroids in GHRH neurons modulate growth and puberty and indicate that GHRH/Kiss1 dual-phenotype neurons play a sex-specific role in the crosstalk between the somatotropic and gonadotropic axes during pubertal transition. Late maturing adolescents usually show delayed growth and bone age. At puberty, gonadal steroids have stimulatory effects on the activation of growth and reproductive axes, but the existence of gonadal steroid-sensitive neuronal crosstalk remains undefined. Moreover, the neural basis for the sex differences observed in the clinical arena is unknown. Lack of ERα in GHRH neurons disrupts growth in both sexes and causes pubertal delay in females. Deletion of androgen receptor in GHRH neurons only delayed female puberty. In adult females, not males, a subset of GHRH neurons shift phenotype to start producing Kiss1. Thus, direct estrogen action in GHRH/Kiss1 dual-phenotype neurons modulates growth and puberty and may orchestrate the sex differences in endocrine function observed during pubertal transition.
性腺类固醇通过未定义的中枢途径调节生长激素 (GH) 的分泌和青春期生长突增。促生长激素释放激素 (GHRH) 神经元表达雌激素受体 α (ERα) 和雄激素受体 (AR),这表明青春期期间性腺类固醇水平的变化可以直接调节生长激素轴。我们生成了 GHRH 细胞中 ERα 缺失的小鼠 (GHRH),这些小鼠在两性中均表现出体长缩短。两组的青春期起始时间相似,但 GHRH 雌性的青春期完成时间延迟。GHRH 细胞中 AR 的缺失 (GHRH 小鼠) 并未导致体长发生变化,但雌性的青春期完成时间也延迟了。使用具有两个报告基因的小鼠模型,我们观察到,尽管 GHRH 神经元在青春期前的小鼠中与 Kiss1 的共表达很少,但在成年雌性小鼠中,约 30%的 GHRH 神经元共表达这两个报告基因,但在雄性小鼠中则没有。和表达的发育分析表明,雌性小鼠弓状核中 ERα 神经元的一个亚群在青春期过渡期间从 GHRH 向 Kiss1 的表型转变。我们的发现表明,性腺类固醇在 GHRH 神经元中的直接作用调节生长和青春期,并表明 GHRH/Kiss1 双表型神经元在青春期过渡期间生殖轴和生长轴之间的串扰中发挥性别特异性作用。青春期后期的青少年通常生长和骨龄发育延迟。在青春期,性腺类固醇对生长和生殖轴的激活具有刺激作用,但性腺类固醇敏感神经元串扰的存在仍未定义。此外,在临床领域观察到的性别差异的神经基础尚不清楚。GHRH 神经元中 ERα 的缺失会破坏两性的生长,并导致雌性的青春期延迟。GHRH 神经元中雄激素受体的缺失仅延迟了雌性的青春期。在成年雌性小鼠中,但不是雄性小鼠中,GHRH 神经元的一个亚群转变表型开始产生 Kiss1。因此,GHRH/Kiss1 双表型神经元中的雌激素直接作用调节生长和青春期,并可能协调青春期过渡期间观察到的内分泌功能的性别差异。