Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6706-6711. doi: 10.1073/pnas.1701405114. Epub 2017 Jun 12.
A national priority is to convert CO into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO in the presence of water as the first step toward CO reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.
当务之急是将 CO 转化为高附加值的化学产品,如液体燃料。由于目前的电催化剂还不够完善,我们旨在通过深入了解铜表面 CO 电化学还原的初始步骤(目前最好的催化剂)来发现新的催化剂。我们利用常压 X 射线光电子能谱,并结合量子力学对结构和自由能的预测,表明在铜表面以下存在一层薄的亚氧化物结构对于在 298 K 下将 CO 以物理吸附的形式结合至关重要,并且我们表明,在有水存在的情况下,这种亚氧化物对于将 CO 转化为化学吸附 CO 是必不可少的,这是 CO 还原产物(如甲酸盐和 CO)的第一步。这种最佳的亚氧化物会导致中性和带电的 Cu 表面位点,为如何设计改进的二氧化碳还原催化剂提供了新的见解。