Suppr超能文献

相似文献

1
Subsurface oxide plays a critical role in CO activation by Cu(111) surfaces to form chemisorbed CO, the first step in reduction of CO.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6706-6711. doi: 10.1073/pnas.1701405114. Epub 2017 Jun 12.
3
Synergy between a Silver-Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):25374-25382. doi: 10.1021/acsami.0c02057. Epub 2020 May 21.
4
Probing the Reaction Mechanism in CO Hydrogenation on Bimetallic Ni/Cu(100) with Near-Ambient Pressure X-Ray Photoelectron Spectroscopy.
ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2548-2554. doi: 10.1021/acsami.9b19523. Epub 2019 Dec 31.
5
Designing Copper-Based Catalysts for Efficient Carbon Dioxide Electroreduction.
Adv Mater. 2021 Nov;33(46):e2005798. doi: 10.1002/adma.202005798. Epub 2021 Apr 29.
6
Hydrogenation of CO on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal-Oxide Interface in Methanol Synthesis.
J Phys Chem B. 2018 Jan 18;122(2):794-800. doi: 10.1021/acs.jpcb.7b06901. Epub 2017 Aug 30.
7
On the Role of Sulfur for the Selective Electrochemical Reduction of CO to Formate on CuS Catalysts.
ACS Appl Mater Interfaces. 2018 Aug 29;10(34):28572-28581. doi: 10.1021/acsami.8b08428. Epub 2018 Aug 20.
8
Mechanistic Insights into the Unique Role of Copper in CO Electroreduction Reactions.
ChemSusChem. 2017 Jan 20;10(2):387-393. doi: 10.1002/cssc.201601144. Epub 2016 Dec 12.
10
Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO Reduction to C Liquids.
ACS Nano. 2021 Jan 26;15(1):1039-1047. doi: 10.1021/acsnano.0c07869. Epub 2020 Dec 30.

引用本文的文献

1
Advancements in Understanding Catalyst Reconstruction During Electrochemical CO Reduction.
Exploration (Beijing). 2025 Apr 22;5(4):e20240019. doi: 10.1002/EXP.20240019. eCollection 2025 Aug.
2
Competitive Carbonate Binding Hinders Electrochemical CO Reduction to CO on Cu Surfaces at Low Overpotentials.
J Am Chem Soc. 2025 Jul 23;147(29):25361-25371. doi: 10.1021/jacs.5c04518. Epub 2025 Jul 10.
3
Insight into the Carbon Monoxide Reduction Reaction on Cu(111) from Operando Electrochemical X-ray Photoelectron Spectroscopy.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202506402. doi: 10.1002/anie.202506402. Epub 2025 Jul 16.
4
The Chemical Nature of the Oxide Directs the Stability and Reactivity of Copper|Oxide Interfaces in the Electrochemical CO Reduction Reaction.
Chem Mater. 2025 Apr 24;37(9):3343-3352. doi: 10.1021/acs.chemmater.5c00135. eCollection 2025 May 13.
5
From flat to stepped: active learning frameworks for investigating local structure at copper-water interfaces.
Phys Chem Chem Phys. 2025 Apr 30;27(17):9169-9177. doi: 10.1039/d5cp00396b.
6
ReS Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO Reduction.
Small Sci. 2021 Jan 15;1(2):2000052. doi: 10.1002/smsc.202000052. eCollection 2021 Feb.
7
Electrochemical CO reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.
Innovation (Camb). 2025 Jan 17;6(3):100807. doi: 10.1016/j.xinn.2025.100807. eCollection 2025 Mar 3.
8
Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.
Adv Sci (Weinh). 2025 Apr;12(13):e2416597. doi: 10.1002/advs.202416597. Epub 2025 Feb 27.
9
Enriching surface-ordered defects on WO for photocatalytic CO-to-CH conversion by water.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2319751121. doi: 10.1073/pnas.2319751121. Epub 2024 Apr 25.
10
Multiscale Investigation of the Mechanism and Selectivity of CO Hydrogenation over Rh(111).
ACS Catal. 2024 Mar 28;14(8):5503-5519. doi: 10.1021/acscatal.3c05939. eCollection 2024 Apr 19.

本文引用的文献

3
Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures.
J Am Chem Soc. 2016 Jul 6;138(26):8207-11. doi: 10.1021/jacs.6b04039. Epub 2016 Jun 23.
4
Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption.
Science. 2016 Jan 29;351(6272):475-8. doi: 10.1126/science.aad8868.
7
A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.
Chem Soc Rev. 2014 Jan 21;43(2):631-75. doi: 10.1039/c3cs60323g.
8
Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy.
Chem Soc Rev. 2013 Jul 7;42(13):5833-57. doi: 10.1039/c3cs60057b.
9
CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films.
J Am Chem Soc. 2012 May 2;134(17):7231-4. doi: 10.1021/ja3010978. Epub 2012 Apr 20.
10
Improved hybrid functional for solids: the HSEsol functional.
J Chem Phys. 2011 Jan 14;134(2):024116. doi: 10.1063/1.3524336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验