文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能识别炎症,并确认成纤维细胞灶为特发性肺纤维化的预后组织生物标志物。

Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis.

机构信息

Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, FI-00290, Helsinki, Finland.

Pathology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.

出版信息

Hum Pathol. 2021 Jan;107:58-68. doi: 10.1016/j.humpath.2020.10.008. Epub 2020 Nov 5.


DOI:10.1016/j.humpath.2020.10.008
PMID:33161029
Abstract

A large number of fibroblast foci (FF) predict mortality in idiopathic pulmonary fibrosis (IPF). Other prognostic histological markers have not been identified. Artificial intelligence (AI) offers a possibility to quantitate possible prognostic histological features in IPF. We aimed to test the use of AI in IPF lung tissue samples by quantitating FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with a deep convolutional neural network (CNN). Lung tissue samples of 71 patients with IPF from the FinnishIPF registry were analyzed by an AI model developed in the Aiforia® platform. The model was trained to detect tissue, air spaces, FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with 20 samples. For survival analysis, cut-point values for high and low values of histological parameters were determined with maximally selected rank statistics. Survival was analyzed using the Kaplan-Meier method. A large area of FF predicted poor prognosis in IPF (p = 0.01). High numbers of interstitial mononuclear inflammatory cells and intra-alveolar macrophages were associated with prolonged survival (p = 0.01 and p = 0.01, respectively). Of lung function values, low diffusing capacity for carbon monoxide was connected to a high density of FF (p = 0.03) and a high forced vital capacity of predicted was associated with a high intra-alveolar macrophage density (p = 0.03). The deep CNN detected histological features that are difficult to quantitate manually. Interstitial mononuclear inflammation and intra-alveolar macrophages were novel prognostic histological biomarkers in IPF. Evaluating histological features with AI provides novel information on the prognostic estimation of IPF.

摘要

大量的成纤维细胞灶 (FF) 预测特发性肺纤维化 (IPF) 的死亡率。其他预后组织学标志物尚未确定。人工智能 (AI) 提供了一种量化 IPF 中可能的预后组织学特征的可能性。我们旨在通过使用深度卷积神经网络 (CNN) 定量 FF、间质单核炎症和肺泡内巨噬细胞,来测试 AI 在 IPF 肺组织样本中的应用。对来自芬兰 IPF 登记处的 71 例 IPF 患者的肺组织样本进行了分析,该模型是在 Aiforia®平台上开发的 AI 模型进行分析的。该模型经过 20 个样本的训练,能够检测组织、气腔、FF、间质单核炎症和肺泡内巨噬细胞。为了进行生存分析,使用最大选择秩统计确定组织学参数高值和低值的截断值。使用 Kaplan-Meier 方法分析生存情况。大量的 FF 预示着 IPF 的预后不良 (p=0.01)。高数量的间质单核炎症细胞和肺泡内巨噬细胞与延长的生存时间相关 (p=0.01 和 p=0.01,分别)。在肺功能值中,一氧化碳弥散量低与 FF 密度高有关 (p=0.03),而预计的用力肺活量高与肺泡内巨噬细胞密度高有关 (p=0.03)。深度 CNN 检测到了难以手动定量的组织学特征。间质单核炎症和肺泡内巨噬细胞是 IPF 的新型预后组织学生物标志物。使用 AI 评估组织学特征为 IPF 的预后评估提供了新的信息。

相似文献

[1]
Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis.

Hum Pathol. 2021-1

[2]
Prognostic significance of fibroblastic foci in usual interstitial pneumonia and non-specific interstitial pneumonia.

Respirology. 2013-2

[3]
The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis.

Am J Respir Crit Care Med. 2002-7-15

[4]
Clinical Impact of Emphysema Evaluated by High-Resolution Computed Tomography on Idiopathic Pulmonary Fibrosis Diagnosed by Surgical Lung Biopsy.

Respiration. 2016

[5]
Usual interstitial pneumonia and smoking-related interstitial fibrosis display epithelial to mesenchymal transition in fibroblastic foci.

Respir Med. 2014-9

[6]
Establishment and application of the BRP prognosis model for idiopathic pulmonary fibrosis.

J Transl Med. 2023-11-11

[7]
The histopathology of idiopathic pulmonary fibrosis in West Highland white terriers shares features of both non-specific interstitial pneumonia and usual interstitial pneumonia in man.

J Comp Pathol. 2013

[8]
Myositis-associated usual interstitial pneumonia has a better survival than idiopathic pulmonary fibrosis.

Rheumatology (Oxford). 2017-3-1

[9]
Could prominent airway-centered fibroblast foci in lung biopsies predict underlying chronic microaspiration in idiopathic pulmonary fibrosis patients?

Hum Pathol. 2016-7

[10]
Medical Research Council dyspnea scale does not relate to fibroblast foci profusion in IPF.

Diagn Pathol. 2011-4-5

引用本文的文献

[1]
Machine Learning-Driven Discovery of TRIM Genes as Diagnostic Biomarkers for Idiopathic Pulmonary Fibrosis.

Med Sci Monit. 2025-6-20

[2]
[Research Progress of Anti-lung Cancer Drug-related Interstitial Lung Disease].

Zhongguo Fei Ai Za Zhi. 2025-4-20

[3]
The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis.

Front Med (Lausanne). 2024-9-19

[4]
Idiopathic Pulmonary Fibrosis: Review of Current Knowledge.

Physiol Res. 2024-8-31

[5]
Identification of oxidative stress-related diagnostic markers and immune infiltration features for idiopathic pulmonary fibrosis by bibliometrics and bioinformatics.

Front Med (Lausanne). 2024-8-6

[6]
Correlation of CT-based radiomics analysis with pathological cellular infiltration in fibrosing interstitial lung diseases.

Jpn J Radiol. 2024-10

[7]
AI-algorithm training and validation for identification of endometrial CD138+ cells in infertility-associated conditions; polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF).

J Pathol Inform. 2024-4-29

[8]
Multidisciplinary Approach to the Diagnosis of Idiopathic Interstitial Pneumonias: Focus on the Pathologist's Key Role.

Int J Mol Sci. 2024-3-23

[9]
Dynamic changes in AI-based analysis of endometrial cellular composition: Analysis of PCOS and RIF endometrium.

J Pathol Inform. 2024-2-1

[10]
Diagnosis of interstitial lung diseases: from Averill A. Liebow to artificial intelligence.

J Pathol Transl Med. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索