Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, FI-00290, Helsinki, Finland.
Pathology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.
Hum Pathol. 2021 Jan;107:58-68. doi: 10.1016/j.humpath.2020.10.008. Epub 2020 Nov 5.
A large number of fibroblast foci (FF) predict mortality in idiopathic pulmonary fibrosis (IPF). Other prognostic histological markers have not been identified. Artificial intelligence (AI) offers a possibility to quantitate possible prognostic histological features in IPF. We aimed to test the use of AI in IPF lung tissue samples by quantitating FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with a deep convolutional neural network (CNN). Lung tissue samples of 71 patients with IPF from the FinnishIPF registry were analyzed by an AI model developed in the Aiforia® platform. The model was trained to detect tissue, air spaces, FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with 20 samples. For survival analysis, cut-point values for high and low values of histological parameters were determined with maximally selected rank statistics. Survival was analyzed using the Kaplan-Meier method. A large area of FF predicted poor prognosis in IPF (p = 0.01). High numbers of interstitial mononuclear inflammatory cells and intra-alveolar macrophages were associated with prolonged survival (p = 0.01 and p = 0.01, respectively). Of lung function values, low diffusing capacity for carbon monoxide was connected to a high density of FF (p = 0.03) and a high forced vital capacity of predicted was associated with a high intra-alveolar macrophage density (p = 0.03). The deep CNN detected histological features that are difficult to quantitate manually. Interstitial mononuclear inflammation and intra-alveolar macrophages were novel prognostic histological biomarkers in IPF. Evaluating histological features with AI provides novel information on the prognostic estimation of IPF.
大量的成纤维细胞灶 (FF) 预测特发性肺纤维化 (IPF) 的死亡率。其他预后组织学标志物尚未确定。人工智能 (AI) 提供了一种量化 IPF 中可能的预后组织学特征的可能性。我们旨在通过使用深度卷积神经网络 (CNN) 定量 FF、间质单核炎症和肺泡内巨噬细胞,来测试 AI 在 IPF 肺组织样本中的应用。对来自芬兰 IPF 登记处的 71 例 IPF 患者的肺组织样本进行了分析,该模型是在 Aiforia®平台上开发的 AI 模型进行分析的。该模型经过 20 个样本的训练,能够检测组织、气腔、FF、间质单核炎症和肺泡内巨噬细胞。为了进行生存分析,使用最大选择秩统计确定组织学参数高值和低值的截断值。使用 Kaplan-Meier 方法分析生存情况。大量的 FF 预示着 IPF 的预后不良 (p=0.01)。高数量的间质单核炎症细胞和肺泡内巨噬细胞与延长的生存时间相关 (p=0.01 和 p=0.01,分别)。在肺功能值中,一氧化碳弥散量低与 FF 密度高有关 (p=0.03),而预计的用力肺活量高与肺泡内巨噬细胞密度高有关 (p=0.03)。深度 CNN 检测到了难以手动定量的组织学特征。间质单核炎症和肺泡内巨噬细胞是 IPF 的新型预后组织学生物标志物。使用 AI 评估组织学特征为 IPF 的预后评估提供了新的信息。
Am J Respir Crit Care Med. 2002-7-15
J Transl Med. 2023-11-11
Rheumatology (Oxford). 2017-3-1
Zhongguo Fei Ai Za Zhi. 2025-4-20
Front Med (Lausanne). 2024-9-19
Physiol Res. 2024-8-31
J Pathol Transl Med. 2024-1