Suppr超能文献

一种基于C-g-CN/CuO纳米复合材料中高效共振能量转移的新型“开-关”电化学发光传感器。

A novel "off-on" electrochemiluminescence sensor based on highly efficient resonance energy transfer in C-g-CN/CuO nanocomposite.

作者信息

Li Mengsi, Wang Caixia, Liu Defang

机构信息

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174, Shapingba Main Street, Chongqing, 400030, China.

出版信息

Anal Chim Acta. 2020 Nov 22;1138:30-37. doi: 10.1016/j.aca.2020.08.066. Epub 2020 Sep 9.

Abstract

A signal "off-on" electrochemiluminescence resonance energy transfer (ECL-RET) sensor based on carboxylated graphene-like carbon nitride (C-g-CN) as donor and CuO nanoneedles as acceptor has been constructed. The distance between donor and acceptor is a critical factor for ECL-RET sensors. Herein, we used a new method to make CuO nanoneedles grow in situ on C-g-CN to form a nanocomposite, largely reducing the distance between donor and acceptor and greatly improving ECL-RET efficiency. In this system, because the CuO could be reduced by dopamine (DA), the ECL emission was significantly enhanced. Hence, a sensitive ECL sensor was successfully fabricated for quantitative detection of DA in dopamine hydrochloride injection and human serum sample. Further, the ECL-RET sensor exhibited a wide linear range from 10 nM to 1 mM, as well as a low detection limit of 8.2 nM. With its excellent stability and selectivity, the novel strategy will enable numerous applications in biological systems.

摘要

构建了一种基于羧基化类石墨相氮化碳(C-g-CN)作为供体、氧化铜纳米针作为受体的“关-开”型信号电化学发光共振能量转移(ECL-RET)传感器。供体与受体之间的距离是ECL-RET传感器的关键因素。在此,我们采用一种新方法使氧化铜纳米针在C-g-CN上原位生长以形成纳米复合材料,大幅缩短了供体与受体之间的距离并极大提高了ECL-RET效率。在该体系中,由于氧化铜可被多巴胺(DA)还原,电化学发光显著增强。因此,成功制备了一种灵敏的ECL传感器用于定量检测盐酸多巴胺注射液和人血清样品中的DA。此外,该ECL-RET传感器展现出10 nM至1 mM的宽线性范围以及8.2 nM的低检测限。凭借其出色的稳定性和选择性,这种新策略将在生物系统中实现众多应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验