Suppr超能文献

亚 100nm 金属氟化物通过 DNA 自组装具有数字可调光学特性。

Sub-100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA.

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

Department of Physics and Center for NanoScience, Ludwig Maximilian University, 80539 Munich, Germany.

出版信息

Sci Adv. 2017 Jun 21;3(6):e1602128. doi: 10.1126/sciadv.1602128. eCollection 2017 Jun.

Abstract

Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure-based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub-100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target.

摘要

荧光显微镜能够将特定的目标检测到单分子水平,已成为生物研究中的一种重要工具。为了将生物信息转化为可成像的信号,我们开发了各种荧光探针,如具有不同颜色的有机染料或荧光蛋白。尽管它们取得了成功,但构建小型荧光探针的一个限制是缺乏一种通用的框架来实现对关键光学性质(如颜色和亮度)的精确和可编程控制。为了解决这一挑战,我们引入了元荧光团,它是基于 DNA 纳米结构的荧光探针,具有可数字调谐的光学性质。每个元荧光团由多个有机荧光团组成,使用 DNA 纳米结构支架以空间受控的方式在紧凑的亚 100nm 结构中排列。我们使用尺寸为 90×60nm 的 DNA 折纸,其尺寸明显小于光学衍射极限,构建了具有可数字调谐亮度、颜色和光稳定性的小型荧光探针,并展示了 124 种虚拟颜色。我们使用这些探针作为荧光条码,实现了对核酸的多重定量分析。此外,我们还展示了在与核酸靶标初始杂交时,具有预定亮度的荧光 DNA 纳米结构的触发原位自组装。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验