文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离子液体在制药领域的作用:相关应用概述。

The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications.

机构信息

Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Int J Mol Sci. 2020 Nov 5;21(21):8298. doi: 10.3390/ijms21218298.


DOI:10.3390/ijms21218298
PMID:33167474
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7663996/
Abstract

Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.

摘要

溶解度、生物利用度、渗透性、多晶型现象和稳定性等问题与固态药物密切相关,这就需要有效的解决方案。为了克服这些缺点,离子液体 (ILs) 已被用作活性药物成分 (API) 合成和结晶中的溶剂、试剂和抗溶剂,药物制剂中的溶剂、共溶剂和乳化剂,用于液体治疗的药物 (API-ILs),以及药物输送为基础的系统的开发和/或改进。本文综述了离子液体在制药领域的应用,涵盖了从药物合成到药物输送的多种应用。目前呈现并讨论了最相关的研究,并对基于 IL 的最显著策略进行了批判性分析,以提高治疗和药物输送系统的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/0b4b61ba8ab6/ijms-21-08298-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/fa5d5b13519c/ijms-21-08298-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/f35f7ec9f974/ijms-21-08298-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/cd904ccf57b6/ijms-21-08298-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/d888bf4c03ae/ijms-21-08298-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/e8048c9a9e52/ijms-21-08298-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/3d617e1a4212/ijms-21-08298-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/5b05e4fc4df4/ijms-21-08298-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/af42b1c670ee/ijms-21-08298-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/725be6e8be45/ijms-21-08298-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/ccb4011a3c5d/ijms-21-08298-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/bd553bcb1e1b/ijms-21-08298-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/99062a028a96/ijms-21-08298-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/8e587ea6a0d7/ijms-21-08298-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/7de54497fb74/ijms-21-08298-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/e9674ee6eede/ijms-21-08298-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/d0ad88ae8299/ijms-21-08298-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/4facc1db6400/ijms-21-08298-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/e8e201c43491/ijms-21-08298-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/610e3f87d1bc/ijms-21-08298-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/f28b56fb0262/ijms-21-08298-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/0b4b61ba8ab6/ijms-21-08298-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/fa5d5b13519c/ijms-21-08298-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/f35f7ec9f974/ijms-21-08298-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/cd904ccf57b6/ijms-21-08298-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/d888bf4c03ae/ijms-21-08298-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/e8048c9a9e52/ijms-21-08298-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/3d617e1a4212/ijms-21-08298-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/5b05e4fc4df4/ijms-21-08298-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/af42b1c670ee/ijms-21-08298-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/725be6e8be45/ijms-21-08298-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/ccb4011a3c5d/ijms-21-08298-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/bd553bcb1e1b/ijms-21-08298-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/99062a028a96/ijms-21-08298-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/8e587ea6a0d7/ijms-21-08298-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/7de54497fb74/ijms-21-08298-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/e9674ee6eede/ijms-21-08298-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/d0ad88ae8299/ijms-21-08298-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/4facc1db6400/ijms-21-08298-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/e8e201c43491/ijms-21-08298-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/610e3f87d1bc/ijms-21-08298-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/f28b56fb0262/ijms-21-08298-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7663996/0b4b61ba8ab6/ijms-21-08298-g021.jpg

相似文献

[1]
The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications.

Int J Mol Sci. 2020-11-5

[2]
Ionic liquids: green and tailor-made solvents in drug delivery.

Drug Discov Today. 2020-5

[3]
A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences.

Curr Drug Deliv. 2024

[4]
Pharmaceutical Applications of Ionic Liquids: A Personal Account.

Chem Rec. 2023-8

[5]
Active pharmaceutical ingredients (APIs) in ionic liquids: An effective approach for API physiochemical parameter optimization.

Drug Discov Today. 2022-9

[6]
Ionic liquids in drug delivery.

Expert Opin Drug Deliv. 2013-6-25

[7]
Ionic liquid-based formulation approaches for enhanced transmucosal drug delivery.

Drug Discov Today. 2024-9

[8]
Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients.

J Control Release. 2021-10-10

[9]
Ionic Liquids for Therapeutic and Drug Delivery Applications.

Curr Drug Res Rev. 2020

[10]
Ionic Liquids-Based Drug Delivery: a Perspective.

Pharm Res. 2022-10

引用本文的文献

[1]
Permeation Enhancer-based Ionogel Shows Remarkable Potential for Oral Insulin Delivery.

Adv Healthc Mater. 2025-8

[2]
Theoretical and experimental investigation of hydration behavior of choline salicylate ionic liquid in the presence of L- glycine.

Sci Rep. 2025-4-22

[3]
New Ionic Liquid Forms of Antituberculosis Drug Combinations for Optimized Stability and Dissolution.

AAPS PharmSciTech. 2025-1-8

[4]
Balancing the Functionality and Biocompatibility of Materials with a Deep-Learning-Based Inverse Design Framework.

Environ Health (Wash). 2024-7-26

[5]
Imidazolium, pyridinium and pyrazinium based ionic liquids with octyl side chains as potential antibacterial agents against multidrug resistant uropathogenic .

Heliyon. 2024-10-24

[6]
Ionic liquids and their potential use in development and improvement of drug delivery systems: evidence of their tendency to promote drug accumulation in the brain.

Pharm Dev Technol. 2024-12

[7]
Ionic Liquid-Mediated Transdermal Delivery of Organogel Containing Cyclosporine A for the Effective Treatment of Psoriasis.

ACS Omega. 2024-9-25

[8]
Ionic Liquid Crystals as Chromogenic Materials.

Materials (Basel). 2024-9-17

[9]
Design, synthesis, analgesic, antibacterial and docking studies of novel 8-piperazinylcaffeine carboxylate ionic liquids.

RSC Adv. 2024-9-10

[10]
Subcellular effects of imidazolium-based ionic liquids with varying anions on the marine bivalve .

Heliyon. 2024-8-13

本文引用的文献

[1]
Synthesis and characterization of ionic liquid functionalized polymers for drug delivery of an anti-inflammatory drug.

Des Monomers Polym. 2012-7-24

[2]
Enhancement of ibuprofen solubility and skin permeation by conjugation with l-valine alkyl esters.

RSC Adv. 2020-2-21

[3]
Insight into the structure-antibacterial activity of amino cation-based and acetate anion-based ionic liquids from computational interactions with the POPC phospholipid bilayer.

Phys Chem Chem Phys. 2020-7-2

[4]
Ionic Liquid-In-Oil Microemulsions Prepared with Biocompatible Choline Carboxylic Acids for Improving the Transdermal Delivery of a Sparingly Soluble Drug.

Pharmaceutics. 2020-4-24

[5]
Preparation, Characterization, and Formulation Optimization of Ionic-Liquid-in-Water Nanoemulsions toward Systemic Delivery of Amphotericin B.

Mol Pharm. 2020-6-1

[6]
Sustainable and efficient electrosynthesis of naproxen using carbon dioxide and ionic liquids.

Chemosphere. 2019-12-11

[7]
Ionic liquids: green and tailor-made solvents in drug delivery.

Drug Discov Today. 2020-5

[8]
Polyvinylidene fluoride-Hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior.

Acta Biomater. 2019-10-4

[9]
Ionic Liquid-Polymer Nanoparticle Hybrid Systems as New Tools to Deliver Poorly Soluble Drugs.

Nanomaterials (Basel). 2019-8-10

[10]
Design Principles of Ionic Liquids for Transdermal Drug Delivery.

Adv Mater. 2019-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索