Suppr超能文献

运用机器学习与病例对照模型比较,以识别确诊登革热病例。

Comparing machine learning with case-control models to identify confirmed dengue cases.

机构信息

Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.

Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, Republic of China.

出版信息

PLoS Negl Trop Dis. 2020 Nov 10;14(11):e0008843. doi: 10.1371/journal.pntd.0008843. eCollection 2020 Nov.

Abstract

In recent decades, the global incidence of dengue has increased. Affected countries have responded with more effective surveillance strategies to detect outbreaks early, monitor the trends, and implement prevention and control measures. We have applied newly developed machine learning approaches to identify laboratory-confirmed dengue cases from 4,894 emergency department patients with dengue-like illness (DLI) who received laboratory tests. Among them, 60.11% (2942 cases) were confirmed to have dengue. Using just four input variables [age, body temperature, white blood cells counts (WBCs) and platelets], not only the state-of-the-art deep neural network (DNN) prediction models but also the conventional decision tree (DT) and logistic regression (LR) models delivered performances with receiver operating characteristic (ROC) curves areas under curves (AUCs) of the ranging from 83.75% to 85.87% [for DT, DNN and LR: 84.60% ± 0.03%, 85.87% ± 0.54%, 83.75% ± 0.17%, respectively]. Subgroup analyses found all the models were very sensitive particularly in the pre-epidemic period. Pre-peak sensitivities (<35 weeks) were 92.6%, 92.9%, and 93.1% in DT, DNN, and LR respectively. Adjusted odds ratios examined with LR for low WBCs [≤ 3.2 (x103/μL)], fever (≥38°C), low platelet counts [< 100 (x103/μL)], and elderly (≥ 65 years) were 5.17 [95% confidence interval (CI): 3.96-6.76], 3.17 [95%CI: 2.74-3.66], 3.10 [95%CI: 2.44-3.94], and 1.77 [95%CI: 1.50-2.10], respectively. Our prediction models can readily be used in resource-poor countries where viral/serologic tests are inconvenient and can also be applied for real-time syndromic surveillance to monitor trends of dengue cases and even be integrated with mosquito/environment surveillance for early warning and immediate prevention/control measures. In other words, a local community hospital/clinic with an instrument of complete blood counts (including platelets) can provide a sentinel screening during outbreaks. In conclusion, the machine learning approach can facilitate medical and public health efforts to minimize the health threat of dengue epidemics. However, laboratory confirmation remains the primary goal of surveillance and outbreak investigation.

摘要

近几十年来,登革热的全球发病率有所增加。受影响的国家采取了更有效的监测策略,以便及早发现疫情、监测趋势并实施预防和控制措施。我们应用了新开发的机器学习方法,从 4894 名患有登革热样疾病(DLI)并接受实验室检测的急诊科患者中识别出实验室确诊的登革热病例。其中,60.11%(2942 例)确诊为登革热。仅使用四个输入变量[年龄、体温、白细胞计数(WBCs)和血小板],不仅最先进的深度神经网络(DNN)预测模型,而且传统的决策树(DT)和逻辑回归(LR)模型都提供了性能,其接收者操作特征(ROC)曲线下面积(AUC)在 83.75%至 85.87%之间[对于 DT、DNN 和 LR:84.60%±0.03%、85.87%±0.54%、83.75%±0.17%]。亚组分析发现,所有模型在流行前时期都非常敏感。流行前的敏感度(<35 周)在 DT、DNN 和 LR 中分别为 92.6%、92.9%和 93.1%。用 LR 检查的白细胞计数低(≤3.2(x103/μL))、发热(≥38°C)、血小板计数低(<100(x103/μL))和老年(≥65 岁)的调整后的优势比分别为 5.17[95%置信区间(CI):3.96-6.76]、3.17[95%CI:2.74-3.66]、3.10[95%CI:2.44-3.94]和 1.77[95%CI:1.50-2.10]。我们的预测模型可以在资源匮乏的国家中方便地使用,这些国家不方便进行病毒/血清学检测,也可以用于实时症状监测,以监测登革热病例的趋势,甚至可以与蚊虫/环境监测相结合,以实现早期预警和即时预防/控制措施。换句话说,具有全血细胞计数(包括血小板)仪器的当地社区医院/诊所可以在疫情爆发期间提供哨点筛查。总之,机器学习方法可以促进医疗和公共卫生工作,最大限度地减少登革热疫情对健康的威胁。然而,实验室确证仍然是监测和疫情调查的主要目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6be5/7654779/32f8beaa0568/pntd.0008843.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验