Suppr超能文献

登革热临床诊断的准确性:使用和不使用 NS1 抗原快速检测的比较:基于人工和贝叶斯网络模型决策的比较。

Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: Comparison between human and Bayesian network model decision.

机构信息

Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand.

出版信息

PLoS Negl Trop Dis. 2018 Jun 18;12(6):e0006573. doi: 10.1371/journal.pntd.0006573. eCollection 2018 Jun.

Abstract

Differentiating dengue patients from other acute febrile illness patients is a great challenge among physicians. Several dengue diagnosis methods are recommended by WHO. The application of specific laboratory tests is still limited due to high cost, lack of equipment, and uncertain validity. Therefore, clinical diagnosis remains a common practice especially in resource limited settings. Bayesian networks have been shown to be a useful tool for diagnostic decision support. This study aimed to construct Bayesian network models using basic demographic, clinical, and laboratory profiles of acute febrile illness patients to diagnose dengue. Data of 397 acute undifferentiated febrile illness patients who visited the fever clinic of the Bangkok Hospital for Tropical Diseases, Thailand, were used for model construction and validation. The two best final models were selected: one with and one without NS1 rapid test result. The diagnostic accuracy of the models was compared with that of physicians on the same set of patients. The Bayesian network models provided good diagnostic accuracy of dengue infection, with ROC AUC of 0.80 and 0.75 for models with and without NS1 rapid test result, respectively. The models had approximately 80% specificity and 70% sensitivity, similar to the diagnostic accuracy of the hospital's fellows in infectious disease. Including information on NS1 rapid test improved the specificity, but reduced the sensitivity, both in model and physician diagnoses. The Bayesian network model developed in this study could be useful to assist physicians in diagnosing dengue, particularly in regions where experienced physicians and laboratory confirmation tests are limited.

摘要

鉴别登革热患者与其他急性发热患者对医生来说是一个巨大的挑战。世界卫生组织推荐了几种登革热诊断方法。由于成本高、设备缺乏和有效性不确定,特定实验室检测的应用仍然有限。因此,临床诊断仍然是一种常见的做法,特别是在资源有限的环境中。贝叶斯网络已被证明是一种有用的诊断决策支持工具。本研究旨在使用急性发热疾病患者的基本人口统计学、临床和实验室特征构建贝叶斯网络模型以诊断登革热。使用来自泰国曼谷热带病医院发热门诊的 397 例急性未分化发热患者的数据进行模型构建和验证。选择了两个最佳的最终模型:一个有 NS1 快速检测结果,另一个没有 NS1 快速检测结果。将模型的诊断准确性与同一组患者的医生进行了比较。贝叶斯网络模型对登革热感染具有良好的诊断准确性,具有 NS1 快速检测结果的模型的 ROC AUC 分别为 0.80 和 0.75。模型的特异性约为 80%,敏感性约为 70%,与医院传染病专家的诊断准确性相似。包括 NS1 快速检测信息可提高模型和医生诊断的特异性,但降低敏感性。本研究中开发的贝叶斯网络模型可用于辅助医生诊断登革热,特别是在经验丰富的医生和实验室确认检测有限的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d427/6023245/94f5e0143602/pntd.0006573.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验