Horowitz Lisa F, Rodriguez Adan D, Au-Yeung Allan, Bishop Kevin W, Barner Lindsey A, Mishra Gargi, Raman Aashik, Delgado Priscilla, Liu Jonathan T C, Gujral Taranjit S, Mehrabi Mehdi, Yang Mengsu, Pierce Robert H, Folch Albert
Department of Bioengineering, University of Washington, Seattle, WA, USA.
Lab Chip. 2021 Jan 5;21(1):122-142. doi: 10.1039/d0lc00801j.
As preclinical animal tests often do not accurately predict drug effects later observed in humans, most drugs under development fail to reach the market. Thus there is a critical need for functional drug testing platforms that use human, intact tissues to complement animal studies. To enable future multiplexed delivery of many drugs to one small biopsy, we have developed a multi-well microfluidic platform that selectively treats cuboidal-shaped microdissected tissues or "cuboids" with well-preserved tissue microenvironments. We create large numbers of uniformly-sized cuboids by semi-automated sectioning of tissue with a commercially available tissue chopper. Here we demonstrate the microdissection method on normal mouse liver, which we characterize with quantitative 3D imaging, and on human glioma xenograft tumors, which we evaluate after time in culture for viability and preservation of the microenvironment. The benefits of size uniformity include lower heterogeneity in future biological assays as well as facilitation of their physical manipulation by automation. Our prototype platform consists of a microfluidic circuit whose hydrodynamic traps immobilize the live cuboids in arrays at the bottom of a multi-well plate. Fluid dynamics simulations enabled the rapid evaluation of design alternatives and operational parameters. We demonstrate the proof-of-concept application of model soluble compounds such as dyes (CellTracker, Hoechst) and the cancer drug cisplatin. Upscaling of the microfluidic platform and microdissection method to larger arrays and numbers of cuboids could lead to direct testing of human tissues at high throughput, and thus could have a significant impact on drug discovery and personalized medicine.
由于临床前动物试验往往无法准确预测随后在人体中观察到的药物效果,大多数正在研发的药物都未能进入市场。因此,迫切需要功能性药物测试平台,利用完整的人体组织来补充动物研究。为了实现未来将多种药物多路输送到一小块活检组织中,我们开发了一种多孔微流控平台,该平台可选择性地处理具有良好保存的组织微环境的立方形显微切割组织或“立方块”。我们通过使用市售组织切片机对组织进行半自动切片来创建大量尺寸均匀的立方块。在这里,我们展示了在正常小鼠肝脏上的显微切割方法,我们用定量三维成像对其进行表征,以及在人胶质瘤异种移植肿瘤上的显微切割方法,我们在培养一段时间后对其进行活力评估和微环境保存评估。尺寸均匀性的好处包括在未来的生物学检测中降低异质性,以及便于通过自动化对其进行物理操作。我们的原型平台由一个微流控电路组成,其流体动力学陷阱将活的立方块固定在多孔板底部的阵列中。流体动力学模拟能够快速评估设计方案和操作参数。我们展示了模型可溶性化合物(如染料(CellTracker、Hoechst)和抗癌药物顺铂)的概念验证应用。将微流控平台和显微切割方法扩大到更大的阵列和更多的立方块数量可能会导致对人体组织进行高通量直接测试,从而可能对药物发现和个性化医疗产生重大影响。