Suppr超能文献

人类血清代谢组潜在决定因素参考图谱。

A reference map of potential determinants for the human serum metabolome.

机构信息

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Nature. 2020 Dec;588(7836):135-140. doi: 10.1038/s41586-020-2896-2. Epub 2020 Nov 11.

Abstract

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment. The origins of specific compounds are known, including metabolites that are highly heritable, or those that are influenced by the gut microbiome, by lifestyle choices such as smoking, or by diet. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites-in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts that were not available to us when we trained the algorithms. We used feature attribution analysis to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites.

摘要

血清代谢组包含大量的生物标志物和各种疾病的致病因子,其中一些是内源性产生的,另一些则是从环境中摄取的。特定化合物的来源是已知的,包括高度遗传的代谢物,或那些受肠道微生物组、生活方式选择(如吸烟)或饮食影响的代谢物。然而,大多数代谢物的关键决定因素仍知之甚少。在这里,我们测量了来自 491 名独特且深度表型健康人类队列的血清样本中的 1251 种代谢物的水平。我们应用机器学习算法根据宿主遗传学、肠道微生物组、临床参数、饮食、生活方式和人体测量学来预测保留个体中的代谢物水平,并对 76%以上的分析代谢物进行了具有统计学意义的预测。饮食和微生物组具有最强的预测能力,各自解释了数百种代谢物——在某些情况下,解释了超过 50%的观察到的方差。我们通过在两个地理位置独立的队列中进行验证,进一步验证了与微生物组相关的预测,这些队列在我们训练算法时对我们来说是不可用的。我们使用特征归因分析来揭示特定的饮食和细菌相互作用。我们进一步证明,其中一些相互作用可能是因果关系,因为我们预测与面包呈正相关的一些代谢物在面包干预的随机临床试验后发现其水平增加。总的来说,我们的结果揭示了 800 多种代谢物的潜在决定因素,为在不同条件下对代谢物的变化进行机制理解以及设计干预措施来操纵循环代谢物水平铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验