Suppr超能文献

二维卤化物钙钛矿中电子 - 声子相互作用的微观图像。

Microscopic Picture of Electron-Phonon Interaction in Two-Dimensional Halide Perovskites.

作者信息

Feldstein David, Perea-Causín Raül, Wang Shuli, Dyksik Mateusz, Watanabe Kenji, Taniguchi Takashi, Plochocka Paulina, Malic Ermin

机构信息

Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden.

Campus Nord, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.

出版信息

J Phys Chem Lett. 2020 Dec 3;11(23):9975-9982. doi: 10.1021/acs.jpclett.0c02661. Epub 2020 Nov 12.

Abstract

Perovskites have attracted much attention due to their remarkable optical properties. While it is well established that excitons dominate their optical response, the impact of higher excitonic states and formation of phonon sidebands in optical spectra still need to be better understood. Here, we perform a theoretical study of excitonic properties of monolayered hybrid organic perovskites-supported by temperature-dependent photoluminescence measurements. Solving the Wannier equation, we obtain microscopic access to the Rydberg-like series of excitonic states including their wave functions and binding energies. Exploiting the generalized Elliot formula, we calculate the photoluminescence spectra demonstrating a pronounced contribution of a phonon sideband for temperatures up to 50 K, in agreement with experimental measurements. Finally, we predict temperature-dependent line widths of the three energetically lowest excitonic transitions and identify the underlying phonon-driven scattering processes.

摘要

钙钛矿因其卓越的光学性质而备受关注。虽然人们已经充分认识到激子主导其光学响应,但更高激子态的影响以及光谱中声子边带的形成仍有待更好地理解。在此,我们通过与温度相关的光致发光测量来支持,对单层有机杂化钙钛矿的激子性质进行了理论研究。通过求解万尼尔方程,我们获得了对类里德堡激子态系列的微观认识,包括它们的波函数和结合能。利用广义埃利奥特公式,我们计算了光致发光光谱,结果表明在高达50K的温度下,声子边带的贡献显著,这与实验测量结果一致。最后,我们预测了能量最低的三个激子跃迁的温度相关线宽,并确定了潜在的声子驱动散射过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e88/7735742/7e9f8c04080f/jz0c02661_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验