Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA.
Craft Academy for Excellence in Science and Mathematics, Morehead State University, Morehead, KY 40351, USA.
Can J Microbiol. 2021 May;67(5):358-371. doi: 10.1139/cjm-2020-0219. Epub 2020 Nov 12.
The multidrug-resistant pathogen displays unusual control of its SOS mutagenesis genes, as it does not encode a LexA repressor, but instead employs the UmuDAb repressor and a small protein, DdrR, that is uniquely found in species. We used bacterial adenylate cyclase two-hybrid analyses to determine if UmuDAb and DdrR coregulation might involve physical interactions. Neither quantitative nor qualitative assays showed UmuDAb interaction with DdrR. DdrR hybrid proteins, however, demonstrated modest head-to-tail interactions in a qualitative assay. The similarity of UmuDAb to the homodimer-forming polymerase manager UmuD and LexA repressor proteins suggested that it may form dimers, which we observed. UmuDAb homodimerization required a free C terminus, and either small truncations or addition of a histidine tag at the C terminus abolished this homodimerization. The amino acid N100, crucial for UmuD dimer formation, was dispensable if both C termini were free to interact. However, mutation of the amino acid G124, necessary for LexA dimerization, yielded significantly less UmuDAb dimerization, even if both C termini were free. This suggests that UmuDAb forms dimers like LexA does, but may not coregulate gene expression involving a physical association with DdrR. The homodimerization of these coregulators provides insight into a LexA-independent, coregulatory process of controlling a conserved bacterial action such as the mutagenic DNA damage response.
多药耐药病原体对其 SOS 诱变基因的控制不同寻常,因为它不编码 LexA 阻遏物,而是使用 UmuDAb 阻遏物和一种在 种中独特发现的小蛋白 DdrR。我们使用细菌腺苷酸环化酶双杂交分析来确定 UmuDAb 和 DdrR 的共同调控是否可能涉及物理相互作用。无论是定量还是定性测定都没有显示 UmuDAb 与 DdrR 的相互作用。然而,DdrR 杂交蛋白在定性测定中显示出适度的头对头相互作用。UmuDAb 与形成同源二聚体的聚合酶管理器 UmuD 和 LexA 阻遏蛋白相似,表明它可能形成二聚体,我们观察到了这种情况。UmuDAb 同源二聚化需要一个游离的 C 末端,并且 C 末端的小截断或添加组氨酸标签都会破坏这种同源二聚化。对于 UmuD 二聚体形成至关重要的氨基酸 N100,如果两个 C 末端都可以自由相互作用,则是可有可无的。然而,对于 LexA 二聚化必需的氨基酸 G124 的突变,即使两个 C 末端都是游离的,也会导致 UmuDAb 二聚化明显减少。这表明 UmuDAb 形成二聚体的方式与 LexA 相似,但可能不会与 DdrR 发生物理关联来共同调控基因表达。这些共同调节剂的同源二聚化提供了一种深入了解控制细菌保守行为(如诱变 DNA 损伤反应)的 LexA 独立的共同调控过程的见解。