Suppr超能文献

通过双杂交分析揭示 SOS 反应共调节剂 UmuDAb 和 DdrR 的同源二聚体和异源二聚体要求。

Homodimerization and heterodimerization requirements of SOS response coregulators UmuDAb and DdrR revealed by two-hybrid analyses.

机构信息

Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA.

Craft Academy for Excellence in Science and Mathematics, Morehead State University, Morehead, KY 40351, USA.

出版信息

Can J Microbiol. 2021 May;67(5):358-371. doi: 10.1139/cjm-2020-0219. Epub 2020 Nov 12.

Abstract

The multidrug-resistant pathogen displays unusual control of its SOS mutagenesis genes, as it does not encode a LexA repressor, but instead employs the UmuDAb repressor and a small protein, DdrR, that is uniquely found in species. We used bacterial adenylate cyclase two-hybrid analyses to determine if UmuDAb and DdrR coregulation might involve physical interactions. Neither quantitative nor qualitative assays showed UmuDAb interaction with DdrR. DdrR hybrid proteins, however, demonstrated modest head-to-tail interactions in a qualitative assay. The similarity of UmuDAb to the homodimer-forming polymerase manager UmuD and LexA repressor proteins suggested that it may form dimers, which we observed. UmuDAb homodimerization required a free C terminus, and either small truncations or addition of a histidine tag at the C terminus abolished this homodimerization. The amino acid N100, crucial for UmuD dimer formation, was dispensable if both C termini were free to interact. However, mutation of the amino acid G124, necessary for LexA dimerization, yielded significantly less UmuDAb dimerization, even if both C termini were free. This suggests that UmuDAb forms dimers like LexA does, but may not coregulate gene expression involving a physical association with DdrR. The homodimerization of these coregulators provides insight into a LexA-independent, coregulatory process of controlling a conserved bacterial action such as the mutagenic DNA damage response.

摘要

多药耐药病原体对其 SOS 诱变基因的控制不同寻常,因为它不编码 LexA 阻遏物,而是使用 UmuDAb 阻遏物和一种在 种中独特发现的小蛋白 DdrR。我们使用细菌腺苷酸环化酶双杂交分析来确定 UmuDAb 和 DdrR 的共同调控是否可能涉及物理相互作用。无论是定量还是定性测定都没有显示 UmuDAb 与 DdrR 的相互作用。然而,DdrR 杂交蛋白在定性测定中显示出适度的头对头相互作用。UmuDAb 与形成同源二聚体的聚合酶管理器 UmuD 和 LexA 阻遏蛋白相似,表明它可能形成二聚体,我们观察到了这种情况。UmuDAb 同源二聚化需要一个游离的 C 末端,并且 C 末端的小截断或添加组氨酸标签都会破坏这种同源二聚化。对于 UmuD 二聚体形成至关重要的氨基酸 N100,如果两个 C 末端都可以自由相互作用,则是可有可无的。然而,对于 LexA 二聚化必需的氨基酸 G124 的突变,即使两个 C 末端都是游离的,也会导致 UmuDAb 二聚化明显减少。这表明 UmuDAb 形成二聚体的方式与 LexA 相似,但可能不会与 DdrR 发生物理关联来共同调控基因表达。这些共同调节剂的同源二聚化提供了一种深入了解控制细菌保守行为(如诱变 DNA 损伤反应)的 LexA 独立的共同调控过程的见解。

相似文献

1
2
Repression of DNA damage response requires DdrR-assisted binding of UmuDAb dimers to atypical SOS box.
J Bacteriol. 2024 Jun 20;206(6):e0043223. doi: 10.1128/jb.00432-23. Epub 2024 May 10.
4
A corepressor participates in LexA-independent regulation of error-prone polymerases in .
Microbiology (Reading). 2020 Feb;166(2):212-226. doi: 10.1099/mic.0.000866.
8
Locking down SOS Mutagenesis Repression in a Dynamic Pathogen.
J Bacteriol. 2022 Nov 15;204(11):e0022022. doi: 10.1128/jb.00220-22. Epub 2022 Oct 4.
9
The Acinetobacter regulatory UmuDAb protein cleaves in response to DNA damage with chimeric LexA/UmuD characteristics.
FEMS Microbiol Lett. 2012 Sep;334(1):57-65. doi: 10.1111/j.1574-6968.2012.02618.x. Epub 2012 Jul 5.
10
DNA damage response coregulator affects many cellular pathways and processes in 17978.
Front Cell Infect Microbiol. 2024 Jan 11;13:1324091. doi: 10.3389/fcimb.2023.1324091. eCollection 2023.

引用本文的文献

1
Identification of EppR, a Second Repressor of Error-Prone DNA Polymerase Genes in Acinetobacter baumannii.
Mol Microbiol. 2025 Jul;124(1):20-39. doi: 10.1111/mmi.15368. Epub 2025 Apr 19.
2
Repression of DNA damage response requires DdrR-assisted binding of UmuDAb dimers to atypical SOS box.
J Bacteriol. 2024 Jun 20;206(6):e0043223. doi: 10.1128/jb.00432-23. Epub 2024 May 10.
4
Locking down SOS Mutagenesis Repression in a Dynamic Pathogen.
J Bacteriol. 2022 Nov 15;204(11):e0022022. doi: 10.1128/jb.00220-22. Epub 2022 Oct 4.
6
The Regulation of LexA on UV-Induced SOS Response in Based on Transcriptome Analysis.
J Microbiol Biotechnol. 2021 Jul 28;31(7):912-920. doi: 10.4014/jmb.2103.03047.

本文引用的文献

1
A corepressor participates in LexA-independent regulation of error-prone polymerases in .
Microbiology (Reading). 2020 Feb;166(2):212-226. doi: 10.1099/mic.0.000866.
2
Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor.
Structure. 2019 Jul 2;27(7):1094-1102.e4. doi: 10.1016/j.str.2019.03.019. Epub 2019 May 2.
3
EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures.
J Mol Biol. 2018 Jul 20;430(15):2244-2248. doi: 10.1016/j.jmb.2018.01.013. Epub 2018 Jan 31.
4
Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership.
ACS Infect Dis. 2018 Mar 9;4(3):349-359. doi: 10.1021/acsinfecdis.7b00122. Epub 2018 Jan 8.
6
The Use and Abuse of LexA by Mobile Genetic Elements.
Trends Microbiol. 2016 May;24(5):391-401. doi: 10.1016/j.tim.2016.02.009. Epub 2016 Mar 9.
7
Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage.
Nucleic Acids Res. 2015 Sep 3;43(15):7315-29. doi: 10.1093/nar/gkv634. Epub 2015 Jul 2.
8
Silencing of DNase Colicin E8 Gene Expression by a Complex Nucleoprotein Assembly Ensures Timely Colicin Induction.
PLoS Genet. 2015 Jun 26;11(6):e1005354. doi: 10.1371/journal.pgen.1005354. eCollection 2015 Jun.
9
Differential roles of antimicrobials in the acquisition of drug resistance through activation of the SOS response in Acinetobacter baumannii.
Antimicrob Agents Chemother. 2015 Jul;59(7):4318-20. doi: 10.1128/AAC.04918-14. Epub 2015 Apr 20.
10
I-TASSER server: new development for protein structure and function predictions.
Nucleic Acids Res. 2015 Jul 1;43(W1):W174-81. doi: 10.1093/nar/gkv342. Epub 2015 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验