Suppr超能文献

杂交表型和基因型纳入核选种计划的影响。

Impact of inclusion rates of crossbred phenotypes and genotypes in nucleus selection programs.

机构信息

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE.

出版信息

J Anim Sci. 2020 Dec 1;98(12). doi: 10.1093/jas/skaa360.

Abstract

Numerous methods have been suggested to incorporate crossbred (CB) phenotypes and genotypes into swine selection programs, yet little research has focused on the implicit trade-off decisions between generating data at the nucleus or commercial level. The aim of this study was to investigate the impact of altering the proportion of purebred (PB) and CB phenotypes and genotypes in genetic evaluations on the response to selection of CB performance. Assuming CB and PB performance with moderate heritabilities (h2=0.4), a three-breed swine crossbreeding scheme was simulated and selection was practiced for six generations, where the goal was to increase CB performance. Phenotypes, genotypes, and pedigrees for three PB breeds (25 and 175 mating males and females for each breed, respectively), F1 crosses (400 mating females), and terminal cross progeny (2,500) were simulated. The genome consisted of 18 chromosomes with 1,800 quantitative trait loci and 72k single nucleotide polymorphism (SNP) markers. Selection was performed in PB breeds using estimated breeding value for each phenotyping/genotyping strategy. Strategies investigated were: 1) increasing the proportion of CB with genotypes, phenotypes, and sire pedigree relationships, 2) decreasing the proportion of PB phenotypes and genotypes, and 3) altering the genetic correlation between PB and CB performance (rpc). Each unique rpc scenario and data collection strategy was replicated 10 times. Results showed that including CB data improved the CB performance regardless of  rpc or data collection strategy compared with when no CB data were included. Compared with using only PB information, including 10% of CB progeny per generation with sire pedigrees and phenotypes increased the response in CB phenotype by 134%, 55%, 33%, 23%, and 21% when rpc was 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. When the same 10% of CB progeny were also genotyped, CB performance increased by 243%, 54%, 38%, 23%, and 20% when the rpc was 0.1, 0.3, 0.5, 0.7, and 0.9, respectively, compared with when no CB data were utilized. Minimal change was observed in the average CB phenotype when PB phenotypes were included or proportionally removed when CB were genotyped. Removal of both PB phenotypes and genotypes when CB were genotyped greatly reduced the response in CB performance. In practice, the optimal inclusion rate of CB and PB data depends upon the genetic correlation between CB and PB animals and the expense of additional CB data collection compared with the economic benefit associated with increased CB performance.

摘要

已经提出了许多方法来将杂交(CB)表型和基因型纳入猪的选择计划中,但很少有研究关注在核心或商业层面生成数据之间的隐含权衡决策。本研究旨在探讨改变遗传评估中纯系(PB)和 CB 表型和基因型比例对 CB 性能选择反应的影响。假设 CB 和 PB 表现具有中度遗传力(h2=0.4),模拟了一个三品种猪杂交方案,并进行了六代选择,目标是提高 CB 性能。模拟了三个 PB 品种的表型、基因型和系谱(每个品种分别有 25 和 175 只交配雄性和雌性)、F1 杂交(400 只交配雌性)和终端杂交后代(2500 只)。基因组由 18 条染色体组成,包含 1800 个数量性状位点和 72k 个单核苷酸多态性(SNP)标记。使用每种表型/基因型策略的估计育种值在 PB 品种中进行了选择。研究的策略有:1)增加具有基因型、表型和父系系谱关系的 CB 比例,2)减少 PB 表型和基因型的比例,3)改变 PB 和 CB 表现之间的遗传相关(rpc)。每种独特的 rpc 情况和数据收集策略都重复了 10 次。结果表明,与不包括 CB 数据相比,无论 rpc 或数据收集策略如何,包括 CB 数据都可以提高 CB 性能。与仅使用 PB 信息相比,当 rpc 分别为 0.1、0.3、0.5、0.7 和 0.9 时,每代包括 10%的具有父系系谱和表型的 CB 后代,使 CB 表型的反应分别增加了 134%、55%、33%、23%和 21%。当同样的 10%的 CB 后代也被基因分型时,当 rpc 分别为 0.1、0.3、0.5、0.7 和 0.9 时,CB 性能分别增加了 243%、54%、38%、23%和 20%,与不利用 CB 数据相比。当包括 PB 表型或按比例去除 CB 时,CB 表型的平均变化最小。当 CB 也被基因分型时,同时去除 PB 表型和基因型大大降低了 CB 性能的反应。在实践中,CB 和 PB 数据的最佳包含率取决于 CB 和 PB 动物之间的遗传相关性以及与增加 CB 性能相关的经济利益相比,额外的 CB 数据收集的成本。

相似文献

引用本文的文献

本文引用的文献

6
AlphaSim: Software for Breeding Program Simulation.AlphaSim:种畜培育程序模拟软件。
Plant Genome. 2016 Nov;9(3). doi: 10.3835/plantgenome2016.02.0013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验