Suppr超能文献

利用低密度杂交基因型来抵消杂交表型及其对纯种预测的影响。

Leveraging low-density crossbred genotypes to offset crossbred phenotypes and their impact on purebred predictions.

机构信息

Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.

Genus PIC, Hendersonville, TN 37075, USA.

出版信息

J Anim Sci. 2022 Dec 1;100(12). doi: 10.1093/jas/skac359.

Abstract

The objectives of this study were to 1) investigate the predictability and bias of genomic breeding values (GEBV) of purebred (PB) sires for CB performance when CB genotypes imputed from a low-density panel are available, 2) assess if the availability of those CB genotypes can be used to partially offset CB phenotypic recording, and 3) investigate the impact of including imputed CB genotypes in genomic analyses when using the algorithm for proven and young (APY). Two pig populations with up to 207,375 PB and 32,893 CB phenotypic records per trait and 138,026 PB and 32,893 CB genotypes were evaluated. PB sires were genotyped for a 50K panel, whereas CB animals were genotyped for a low-density panel of 600 SNP and imputed to 50K. The predictability and bias of GEBV of PB sires for backfat thickness (BFX) and average daily gain recorded (ADGX) recorded on CB animals were assessed when CB genotypes were available or not in the analyses. In the first set of analyses, direct inverses of the genomic relationship matrix (G) were used with phenotypic datasets truncated at different time points. In the next step, we evaluated the APY algorithm with core compositions differing in the CB genotype contributions. After that, the performance of core compositions was compared with an analysis using a random PB core from a purely PB genomic set. The number of rounds to convergence was recorded for all APY analyses. With the direct inverse of G in the first set of analyses, adding CB genotypes imputed from a low-density panel (600 SNP) did not improve predictability or reduce the bias of PB sires' GEBV for CB performance, even for sires with fewer CB progeny phenotypes in the analysis. That indicates that the inclusion of CB genotypes primarily used for inferring pedigree in commercial farms is of no benefit to offset CB phenotyping. When CB genotypes were incorporated into APY, a random core composition or a core with no CB genotypes reduced bias and the number of rounds to convergence but did not affect predictability. Still, a PB random core composition from a genomic set with only PB genotypes resulted in the highest predictability and the smallest number of rounds to convergence, although bias increased. Genotyping CB individuals for low-density panels is a valuable identification tool for linking CB phenotypes to pedigree; however, the inclusion of those CB genotypes imputed from a low-density panel (600 SNP) might not benefit genomic predictions for PB individuals or offset CB phenotyping for the evaluated CB performance traits. Further studies will help understand the usefulness of those imputed CB genotypes for traits with lower PB-CB genetic correlations and traits not recorded in the PB environment, such as mortality and disease traits.

摘要

本研究的目的是

1)当可用低深度组进行 CB 基因型推断时,调查纯系(PB)父本的基因组育种值(GEBV)对 CB 性能的可预测性和偏差;2)评估那些 CB 基因型的可用性是否可部分抵消 CB 表型记录;3)当使用已验证和年轻(APY)算法时,调查在基因组分析中包括推断的 CB 基因型的影响。对两个猪群进行了评估,每个群体的 PB 个体的表型记录高达 207,375 个,每个性状的 CB 个体的表型记录高达 32,893 个,每个群体的 PB 个体的基因型记录高达 138,026 个,CB 个体的基因型记录高达 32,893 个。PB 父本进行了 50K 面板的基因分型,而 CB 动物则进行了 600 SNP 的低密度面板基因分型,并推断至 50K。当分析中可用或不可用 CB 基因型时,评估了 PB 父本的 GEBV 对 CB 动物背部脂肪厚度(BFX)和平均日增重(ADGX)记录的可预测性和偏差。在第一组分析中,使用直接逆基因组关系矩阵(G)与不同时间点截断的表型数据集。下一步,我们评估了具有不同 CB 基因型贡献的核心组成的 APY 算法。之后,将核心组成的性能与使用来自纯 PB 基因组集的随机 PB 核心的分析进行了比较。记录了所有 APY 分析的收敛轮数。在第一组分析中使用 G 的直接逆时,添加来自低深度组(600 SNP)的推断 CB 基因型并不能提高 PB 父本的 GEBV 对 CB 性能的可预测性或降低其偏差,即使在分析中 CB 后代的表型较少。这表明,纳入主要用于推断商业农场中系谱的 CB 基因型对抵消 CB 表型没有好处。当将 CB 基因型纳入 APY 时,随机核心组成或不包含 CB 基因型的核心组成可降低偏差和收敛轮数,但不影响可预测性。尽管偏差增加,但来自仅包含 PB 基因型的基因组集的 PB 随机核心组成仍可产生最高的可预测性和最小的收敛轮数。对 CB 个体进行低密度面板基因分型是将 CB 表型与系谱联系起来的有价值的识别工具;然而,纳入那些来自低深度组(600 SNP)的推断 CB 基因型可能不会有益于 PB 个体的基因组预测,也不能抵消评估的 CB 性能性状的 CB 表型记录。进一步的研究将有助于了解那些推断的 CB 基因型对于 PB-CB 遗传相关性较低的性状和 PB 环境中未记录的性状(如死亡率和疾病性状)的基因组预测的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9a/9733505/f32a777871f9/skac359_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验