Suppr超能文献

动态个体生命体征轨迹早期预警评分(DyniEWS)与快照式国家早期预警评分(NEWS)对术后病情恶化的预测作用

Dynamic individual vital sign trajectory early warning score (DyniEWS) versus snapshot national early warning score (NEWS) for predicting postoperative deterioration.

作者信息

Zhu Yajing, Chiu Yi-Da, Villar Sofia S, Brand Jonathan W, Patteril Mathew V, Morrice David J, Clayton James, Mackay Jonathan H

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Research and Development, Royal Papworth Hospital, Cambridge, UK.

出版信息

Resuscitation. 2020 Dec;157:176-184. doi: 10.1016/j.resuscitation.2020.10.037. Epub 2020 Nov 9.

Abstract

AIMS

International early warning scores (EWS) including the additive National Early Warning Score (NEWS) and logistic EWS currently utilise physiological snapshots to predict clinical deterioration. We hypothesised that a dynamic score including vital sign trajectory would improve discriminatory power.

METHODS

Multicentre retrospective analysis of electronic health record data from postoperative patients admitted to cardiac surgical wards in four UK hospitals. Least absolute shrinkage and selection operator-type regression (LASSO) was used to develop a dynamic model (DyniEWS) to predict a composite adverse event of cardiac arrest, unplanned intensive care re-admission or in-hospital death within 24 h.

RESULTS

A total of 13,319 postoperative adult cardiac patients contributed 442,461 observations of which 4234 (0.96%) adverse events in 24 h were recorded. The new dynamic model (AUC = 0.80 [95% CI 0.78-0.83], AUPRC = 0.12 [0.10-0.14]) outperforms both an updated snapshot logistic model (AUC = 0.76 [0.73-0.79], AUPRC = 0.08 [0.60-0.10]) and the additive National Early Warning Score (AUC = 0.73 [0.70-0.76], AUPRC = 0.05 [0.02-0.08]). Controlling for the false alarm rates to be at current levels using NEWS cut-offs of 5 and 7, DyniEWS delivers a 7% improvement in balanced accuracy and increased sensitivities from 41% to 54% at NEWS 5 and 18% to -30% at NEWS 7.

CONCLUSIONS

Using an advanced statistical approach, we created a model that can detect dynamic changes in risk of unplanned readmission to intensive care, cardiac arrest or in-hospital mortality and can be used in real time to risk-prioritise clinical workload.

摘要

目的

国际早期预警评分(EWS),包括累加式国家早期预警评分(NEWS)和逻辑EWS,目前利用生理数据快照来预测临床病情恶化。我们假设,包含生命体征轨迹的动态评分将提高判别能力。

方法

对英国四家医院心脏外科病房收治的术后患者的电子健康记录数据进行多中心回顾性分析。使用最小绝对收缩和选择算子类型回归(LASSO)来开发一个动态模型(DyniEWS),以预测24小时内心脏骤停、非计划重症监护再入院或院内死亡的复合不良事件。

结果

共有13319名术后成年心脏患者提供了442461次观察数据,其中记录了24小时内4234例(0.96%)不良事件。新的动态模型(AUC = 0.80 [95% CI 0.78 - 0.83],AUPRC = 0.12 [0.10 - 0.14])优于更新后的快照逻辑模型(AUC = 当使用NEWS临界值5和7将误报率控制在当前水平时,DyniEWS在平衡准确率方面提高了7%,在NEWS为5时敏感性从41%提高到54%,在NEWS为7时从18%提高到30%。

结论

通过使用先进的统计方法,我们创建了一个模型,该模型可以检测非计划入住重症监护病房、心脏骤停或院内死亡风险的动态变化,并可实时用于对临床工作量进行风险优先级排序。 0.76 [0.73 - 0.79],AUPRC = 0.08 [0.60 - 0.10])和累加式国家早期预警评分(AUC = 0.73 [0.70 - 0.76],AUPRC = 0.05 [0.02 - 0.08])。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ca1/7762721/f899af94b73f/gr1.jpg

相似文献

5
Comparison of early warning scores for predicting clinical deterioration and infection in obstetric patients.
BMC Pregnancy Childbirth. 2022 Apr 6;22(1):295. doi: 10.1186/s12884-022-04631-0.
8
Short National Early Warning Score - Developing a Modified Early Warning Score.
Aust Crit Care. 2018 Nov;31(6):376-381. doi: 10.1016/j.aucc.2017.11.004. Epub 2017 Dec 11.

引用本文的文献

3
Modifications to the National Early Warning Score 2: a Scoping Review.
BMC Med. 2025 Mar 11;23(1):154. doi: 10.1186/s12916-025-03943-0.
4
Early prediction cardiac arrest in intensive care units: the value of laboratory indicator trends.
World J Emerg Med. 2025;16(1):67-70. doi: 10.5847/wjem.j.1920-8642.2025.003.
6
Developing a real-time detection tool and an early warning score using a continuous wearable multi-parameter monitor.
Front Physiol. 2023 Mar 29;14:1138647. doi: 10.3389/fphys.2023.1138647. eCollection 2023.
7
Missing data imputation techniques for wireless continuous vital signs monitoring.
J Clin Monit Comput. 2023 Oct;37(5):1387-1400. doi: 10.1007/s10877-023-00975-w. Epub 2023 Feb 2.
9

本文引用的文献

2
Improving early warning scores - more data, better validation, the same response.
Anaesthesia. 2020 Apr;75(4):550. doi: 10.1111/anae.14878.
3
The fifth vital sign? Nurse worry predicts inpatient deterioration within 24 hours.
JAMIA Open. 2019 Aug 28;2(4):465-470. doi: 10.1093/jamiaopen/ooz033. eCollection 2019 Dec.
4
Deep-learning model for predicting 30-day postoperative mortality.
Br J Anaesth. 2019 Nov;123(5):688-695. doi: 10.1016/j.bja.2019.07.025. Epub 2019 Sep 23.
5
Improving early warning scores - more data, better validation, the same response.
Anaesthesia. 2020 Feb;75(2):149-151. doi: 10.1111/anae.14818. Epub 2019 Aug 21.
9
The effect of fractional inspired oxygen concentration on early warning score performance: A database analysis.
Resuscitation. 2019 Jun;139:192-199. doi: 10.1016/j.resuscitation.2019.04.002. Epub 2019 Apr 18.
10
The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review.
PLoS One. 2019 Jan 15;14(1):e0210875. doi: 10.1371/journal.pone.0210875. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验