Zhu Yajing, Chiu Yi-Da, Villar Sofia S, Brand Jonathan W, Patteril Mathew V, Morrice David J, Clayton James, Mackay Jonathan H
MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Research and Development, Royal Papworth Hospital, Cambridge, UK.
Resuscitation. 2020 Dec;157:176-184. doi: 10.1016/j.resuscitation.2020.10.037. Epub 2020 Nov 9.
International early warning scores (EWS) including the additive National Early Warning Score (NEWS) and logistic EWS currently utilise physiological snapshots to predict clinical deterioration. We hypothesised that a dynamic score including vital sign trajectory would improve discriminatory power.
Multicentre retrospective analysis of electronic health record data from postoperative patients admitted to cardiac surgical wards in four UK hospitals. Least absolute shrinkage and selection operator-type regression (LASSO) was used to develop a dynamic model (DyniEWS) to predict a composite adverse event of cardiac arrest, unplanned intensive care re-admission or in-hospital death within 24 h.
A total of 13,319 postoperative adult cardiac patients contributed 442,461 observations of which 4234 (0.96%) adverse events in 24 h were recorded. The new dynamic model (AUC = 0.80 [95% CI 0.78-0.83], AUPRC = 0.12 [0.10-0.14]) outperforms both an updated snapshot logistic model (AUC = 0.76 [0.73-0.79], AUPRC = 0.08 [0.60-0.10]) and the additive National Early Warning Score (AUC = 0.73 [0.70-0.76], AUPRC = 0.05 [0.02-0.08]). Controlling for the false alarm rates to be at current levels using NEWS cut-offs of 5 and 7, DyniEWS delivers a 7% improvement in balanced accuracy and increased sensitivities from 41% to 54% at NEWS 5 and 18% to -30% at NEWS 7.
Using an advanced statistical approach, we created a model that can detect dynamic changes in risk of unplanned readmission to intensive care, cardiac arrest or in-hospital mortality and can be used in real time to risk-prioritise clinical workload.
国际早期预警评分(EWS),包括累加式国家早期预警评分(NEWS)和逻辑EWS,目前利用生理数据快照来预测临床病情恶化。我们假设,包含生命体征轨迹的动态评分将提高判别能力。
对英国四家医院心脏外科病房收治的术后患者的电子健康记录数据进行多中心回顾性分析。使用最小绝对收缩和选择算子类型回归(LASSO)来开发一个动态模型(DyniEWS),以预测24小时内心脏骤停、非计划重症监护再入院或院内死亡的复合不良事件。
共有13319名术后成年心脏患者提供了442461次观察数据,其中记录了24小时内4234例(0.96%)不良事件。新的动态模型(AUC = 0.80 [95% CI 0.78 - 0.83],AUPRC = 0.12 [0.10 - 0.14])优于更新后的快照逻辑模型(AUC = 当使用NEWS临界值5和7将误报率控制在当前水平时,DyniEWS在平衡准确率方面提高了7%,在NEWS为5时敏感性从41%提高到54%,在NEWS为7时从18%提高到30%。
通过使用先进的统计方法,我们创建了一个模型,该模型可以检测非计划入住重症监护病房、心脏骤停或院内死亡风险的动态变化,并可实时用于对临床工作量进行风险优先级排序。 0.76 [0.73 - 0.79],AUPRC = 0.08 [0.60 - 0.10])和累加式国家早期预警评分(AUC = 0.73 [0.70 - 0.76],AUPRC = 0.05 [0.02 - 0.08])。