Suppr超能文献

使用深度卷积神经网络对膝关节平片上的个体膝骨关节炎特征进行自动分级

Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks.

作者信息

Tiulpin Aleksei, Saarakkala Simo

机构信息

Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90220 Oulu, Finland.

Department of Diagnostic Radiology, Oulu University Hospital, 90220 Oulu, Finland.

出版信息

Diagnostics (Basel). 2020 Nov 10;10(11):932. doi: 10.3390/diagnostics10110932.

Abstract

Knee osteoarthritis (OA) is the most common musculoskeletal disease in the world. In primary healthcare, knee OA is diagnosed using clinical examination and radiographic assessment. Osteoarthritis Research Society International (OARSI) atlas of OA radiographic features allows performing independent assessment of knee osteophytes, joint space narrowing and other knee features. This provides a fine-grained OA severity assessment of the knee, compared to the gold standard and most commonly used Kellgren-Lawrence (KL) composite score. In this study, we developed an automatic method to predict KL and OARSI grades from knee radiographs. Our method is based on Deep Learning and leverages an ensemble of residual networks with 50 layers. We used transfer learning from ImageNet with a fine-tuning on the Osteoarthritis Initiative (OAI) dataset. An independent testing of our model was performed on the Multicenter Osteoarthritis Study (MOST) dataset. Our method yielded Cohen's kappa coefficients of 0.82 for KL-grade and 0.79, 0.84, 0.94, 0.83, 0.84 and 0.90 for femoral osteophytes, tibial osteophytes and joint space narrowing for lateral and medial compartments, respectively. Furthermore, our method yielded area under the ROC curve of 0.98 and average precision of 0.98 for detecting the presence of radiographic OA, which is better than the current state-of-the-art.

摘要

膝关节骨关节炎(OA)是世界上最常见的肌肉骨骼疾病。在初级医疗保健中,通过临床检查和影像学评估来诊断膝关节OA。国际骨关节炎研究学会(OARSI)的OA影像学特征图谱可对膝关节骨赘、关节间隙变窄及其他膝关节特征进行独立评估。与金标准及最常用的凯尔格伦-劳伦斯(KL)综合评分相比,这能对膝关节OA严重程度进行更细致的评估。在本研究中,我们开发了一种从膝关节X线片预测KL和OARSI分级的自动方法。我们的方法基于深度学习,利用了一个由50层残差网络组成的集成模型。我们采用了来自ImageNet的迁移学习,并在骨关节炎倡议(OAI)数据集上进行微调。我们在多中心骨关节炎研究(MOST)数据集上对模型进行了独立测试。我们的方法在KL分级上的科恩kappa系数为0.82,在股骨骨赘、胫骨骨赘以及外侧和内侧关节间隙变窄方面的科恩kappa系数分别为0.79、0.84、0.94、0.83、0.84和0.90。此外,我们的方法在检测影像学OA存在时的ROC曲线下面积为0.98,平均精度为0.98,优于当前的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb05/7697270/1d2779f8598b/diagnostics-10-00932-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验