Tariq Tayyaba, Suhail Zobia, Nawaz Zubair
Department of Computer Science, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab 54000 Pakistan.
Department of Data Science, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab 54000 Pakistan.
Biomed Eng Lett. 2024 Oct 10;15(1):1-35. doi: 10.1007/s13534-024-00437-5. eCollection 2025 Jan.
Osteoarthritis (OA) is a musculoskeletal disorder that affects weight-bearing joints like the hip, knee, spine, feet, and fingers. It is a chronic disorder that causes joint stiffness and leads to functional impairment. Knee osteoarthritis (KOA) is a degenerative knee joint disease that is a significant disability for over 60 years old, with the most prevalent symptom of knee pain. Radiography is the gold standard for the evaluation of KOA. These radiographs are evaluated using different classification systems. Kellgren and Lawrence's (KL) classification system is used to classify X-rays into five classes (Normal = 0 to Severe = 4) based on osteoarthritis severity levels. In recent years, with the advent of artificial intelligence, machine learning, and deep learning, more emphasis has been given to automated medical diagnostic systems or decision support systems. Computer-aided diagnosis is needed for the improvement of health-related information systems. This survey aims to review the latest advances in automated radiographic classification and detection of KOA using the KL system. A total of 85 articles are reviewed as original research or survey articles. This survey will benefit researchers, practitioners, and medical experts interested in X-rays-based KOA diagnosis and prediction.
骨关节炎(OA)是一种肌肉骨骼疾病,会影响负重关节,如髋、膝、脊柱、足和手指。它是一种慢性疾病,会导致关节僵硬并导致功能障碍。膝骨关节炎(KOA)是一种退行性膝关节疾病,对60岁以上的人来说是一种严重的残疾,最常见的症状是膝关节疼痛。X线摄影是评估KOA的金标准。这些X线片使用不同的分类系统进行评估。凯尔格伦和劳伦斯(KL)分类系统用于根据骨关节炎严重程度将X线分为五类(正常=0至重度=4)。近年来,随着人工智能、机器学习和深度学习的出现,人们越来越重视自动化医疗诊断系统或决策支持系统。为改善健康相关信息系统,需要计算机辅助诊断。本综述旨在回顾使用KL系统对KOA进行自动化X线分类和检测的最新进展。共检索到85篇作为原始研究或综述文章的文献。本综述将使对基于X线的KOA诊断和预测感兴趣的研究人员、从业者和医学专家受益。