Helwan Abdulkader, Azar Danielle, Abdellatef Hamdan
Lebanese American University, Byblos, Lebanon.
J Xray Sci Technol. 2022;30(5):1009-1021. doi: 10.3233/XST-221190.
Knee Osteoarthritis (KOA) is the most common type of Osteoarthritis (OA) and it is diagnosed by physicians using a standard 0 -4 Kellgren Lawrence (KL) grading system which sets the KOA on a spectrum of 5 grades; starting from normal (0) to Severe OA (4).
In this paper, we propose a transfer learning approach of a very deep wide residual learning-based network (WRN-50-2) which is fine-tuned using X-ray plain radiographs from the Osteoarthritis Initiative (OAI) dataset to learn the KL severity grading of KOA.
We propose a data augmentation approach of OAI data to avoid data imbalance and reduce overfitting by applying it only to certain KL grades depending on their number of plain radiographs. Then we conduct experiments to test the model based on an independent testing data of original plain radiographs acquired from the OAI dataset.
Experimental results showed good generalization power in predicting the KL grade of knee X-rays with an accuracy of 72% and Precision 74%. Moreover, using Grad-Cam, we also observed that network selected some distinctive features that describe the prediction of a KL grade of a knee radiograph.
This study demonstrates that our proposed new model outperforms several other related works, and it can be further improved to be used to help radiologists make more accurate and precise diagnosis of KOA in future clinical practice.
膝关节骨关节炎(KOA)是骨关节炎(OA)最常见的类型,医生使用标准的0-4级凯尔格伦·劳伦斯(KL)分级系统对其进行诊断,该系统将KOA分为5个等级;从正常(0级)到重度OA(4级)。
在本文中,我们提出了一种基于非常深的宽残差学习网络(WRN-50-2)的迁移学习方法,该方法使用来自骨关节炎倡议(OAI)数据集的X线平片进行微调,以学习KOA的KL严重程度分级。
我们提出了一种OAI数据增强方法,通过仅根据某些KL等级的平片数量将其应用于特定的KL等级,来避免数据不平衡并减少过拟合。然后,我们基于从OAI数据集获取的原始平片的独立测试数据进行实验来测试模型。
实验结果表明,该模型在预测膝关节X线的KL等级方面具有良好的泛化能力,准确率为72%,精确率为74%。此外,使用Grad-Cam,我们还观察到网络选择了一些独特的特征来描述膝关节X线片KL等级的预测。
本研究表明,我们提出的新模型优于其他一些相关工作,并且可以进一步改进,以在未来的临床实践中帮助放射科医生对KOA做出更准确和精确的诊断。