Suppr超能文献

基于忆阻器的芯片对 COPD 患者和健康对照者唾液样本的神经形态识别。

Neuromorphic on-chip recognition of saliva samples of COPD and healthy controls using memristive devices.

机构信息

IHP-Leibniz-Institut Fuer Innovative Mikroelektronik, 15236, Frankfurt an der Oder, Germany.

Nanoelectronics, Faculty of Engineering, Kiel University, 24143, Kiel, Germany.

出版信息

Sci Rep. 2020 Nov 12;10(1):19742. doi: 10.1038/s41598-020-76823-7.

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. However, shortcomings of cloud-based ML tools in terms of data safety and energy efficiency limit their integration with low-power medical devices. To address this, energy efficient neuromorphic platforms can be used for the hardware-based implementation of ML methods. Therefore, a memristive neuromorphic platform is presented in this paper for the on-chip recognition of saliva samples of COPD patients and healthy controls. Results of its performance evaluations showed that the digital neuromorphic chip is capable of recognizing unseen COPD samples with accuracy and sensitivity values of 89% and 86%, respectively. Integration of this technology into personalized healthcare devices will enable the better management of chronic diseases such as COPD.

摘要

慢性阻塞性肺疾病(COPD)是一种危及生命的肺部疾病,影响着全球数百万人。在家庭护理环境中,实施机器学习(ML)技术对于 COPD 的有效管理至关重要。然而,云基 ML 工具在数据安全性和能源效率方面的不足限制了它们与低功耗医疗设备的集成。为了解决这个问题,可以使用节能的神经形态平台来实现基于硬件的 ML 方法。因此,本文提出了一种基于忆阻器的神经形态平台,用于对 COPD 患者和健康对照者的唾液样本进行片上识别。其性能评估结果表明,该数字神经形态芯片能够以 89%和 86%的准确率和灵敏度值识别未见过的 COPD 样本。将这项技术集成到个性化医疗设备中,将使 COPD 等慢性病的管理得到改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb2/7661727/169a8c97fd1e/41598_2020_76823_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验